

Admin Guide

Welcome to the SingularityCE Admin Guide!

This guide aims to cover installation instructions, configuration
detail, and other topics important to system administrators working with
SingularityCE.

See the user guide [https://www.sylabs.io/guides/3.11/user-guide/] for more
information about how to use SingularityCE.

	Admin Quickstart
	Architecture of SingularityCE

	SingularityCE Security

	OCI Compatibility

	Installation from Source

	Installation from RPM/Deb Packages

	Configuration

	Test SingularityCE

	Installing SingularityCE
	Installation on Linux

	Installation on Windows or Mac

	Configuration files
	singularity.conf

	cgroups.toml

	ecl.toml

	GPU Library Configuration

	capability.json

	seccomp-profiles

	remote.yaml

	User Namespaces & Fakeroot
	User Namespace Requirements

	Unprivileged Installations

	–userns option

	–sif-fuse option

	Fakeroot feature

	Unprivileged Builds Without User Namespaces

	Security in SingularityCE
	Security Policy

	Background

	Setuid & User Namespaces

	Runtime & User Privilege Model

	Singularity Image Format (SIF)

	Plugins

	Configuration & Runtime Options

	Appendix

	License

Admin Quick Start

This quick start gives an overview of installation of SingularityCE from
source, a description of the architecture of SingularityCE, and pointers
to configuration files. More information, including alternate
installation options and detailed configuration options can be found
later in this guide.

Architecture of SingularityCE

SingularityCE is designed to allow containers to be executed as if they
were native programs or scripts on a host system. No daemon is required
to build or run containers, and the security model is compatible with
shared systems.

As a result, integration with clusters and schedulers such as Univa Grid
Engine, Torque, SLURM, SGE, and many others is as simple as running any
other command. All standard input, output, errors, pipes, IPC, and other
communication pathways used by locally running programs are synchronized
with the applications running locally within the container.

SingularityCE favors an ‘integration over isolation’ approach to
containers. By default only the mount namespace is isolated for
containers, so that they have their own filesystem view. Access to
hardware such as GPUs, high speed networks, and shared filesystems is
easy and does not require special configuration. Default access to
user home directories, /tmp space, and installation specific
mounts makes it simple for users to benefit from the reproducibility
of containerized applications without major changes to their existing
workflows. Where more complete isolation is important, SingularityCE
can use additional Linux namespaces and other security and resource
limits to accomplish this.

SingularityCE Security

Note

See also the security section of this guide, for more
detail.

SingularityCE uses a number of strategies to provide safety and
ease-of-use on both single-user and shared systems. Notable security
features include:

	The effective user inside a container is the same as the user who ran the
container. This means access to files and devices from the container is
easily controlled with standard POSIX permissions.

	Container filesystems are mounted nosuid and container
applications run with the prctl NO_NEW_PRIVS flag set. This means
that applications in a container cannot gain additional
privileges. A regular user cannot sudo or otherwise gain root
privilege on the host via a container.

	The Singularity Image Format (SIF) supports encryption of
containers, as well as cryptographic signing and verification of
their content.

	SIF containers are immutable and their payload is run directly,
without extraction to disk. This means that the container can
always be verified, even at runtime, and encrypted content is not
exposed on disk.

	Restrictions can be configured to limit the ownership, location,
and cryptographic signatures of containers that are permitted to
be run.

To support the SIF image format, automated networking setup etc., and
older Linux distributions without user namespace support, Singularity
runs small amounts of privileged container setup code via a
starter-setuid binary. This is a ‘setuid root’ binary, so that
SingularityCE can perform filesystem loop mounts and other operations
that need privilege. The setuid flow is the default mode of operation,
but can be disabled on build, or in the
singularity.conf configuration file if required.

Note

Running SingularityCE in non-setuid mode requires unprivileged user namespace
support in the operating system kernel and does not support all features.
This impacts integrity/security guarantees of containers at runtime.

See the non-setuid installation section
for further detail on how to install SingularityCE to run in
non-setuid mode.

OCI Compatibility

SingularityCE allows users to run, and build from, the majority of OCI
containers created with tools such as Docker. Beginning with SingularityCE 3.11,
there are two modes of operation that support OCI containers in different ways.

SingularityCE’s native runtime, used by default, supports all features that
are exposed via the singularity command. It builds and runs containers in
SingularityCE’s own on-disk formats. When an OCI container is pulled or built
into a SingularityCE image, a translation step occurs. While most OCI images are
supported as-is, there are some limitations and compatibility options may be
required.

SingularityCE 3.11’s experimental OCI runtime, enabled with the --oci flag,
runs containers using a low-level OCI runtime - either crun or runc. The
container is executed from a native OCI format on-disk. Not all CLI features are
currently implemented, but OCI containers using the USER directive or which
are otherwise incompatible with SingularityCE’s native runtime are better
supported. This mode is considered experimental, ahead of full OCI support in
version 4.0. Functionality may change across 3.11 patch releases of
SingularityCE.

Installation from Source

SingularityCE can be installed from source directly, or by building an
RPM package from the source. Linux distributions may also package
SingularityCE, but their packages may not be up-to-date with the
upstream version on GitHub.

To install SingularityCE directly from source, follow the procedure
below. Other methods are discussed in the Installation section.

Note

This quick-start that you will install as root using sudo, so
that SingularityCE uses the default setuid workflow, and all
features are available. See the non-setuid installation section of this guide for detail of how to
install as a non-root user, and how this affects the functionality of
SingularityCE.

Install Dependencies

On Red Hat Enterprise Linux or CentOS install the following
dependencies:

Install basic tools for compiling
sudo yum groupinstall -y 'Development Tools'
Install RPM packages for dependencies
sudo yum install -y \
 wget \
 libseccomp-devel \
 glib2-devel \
 squashfs-tools \
 cryptsetup \
 runc

On Ubuntu or Debian install the following dependencies:

Ensure repositories are up-to-date
sudo apt-get update
Install debian packages for dependencies
sudo apt-get install -y \
 wget \
 build-essential \
 libseccomp-dev \
 libglib2.0-dev \
 pkg-config \
 squashfs-tools \
 cryptsetup \
 runc

_Note - runc can be ommitted if you will not use the singularity oci
commands._

Install Go

SingularityCE v3 is written primarily in Go, and you will need Go installed to
compile it from source. Versions of Go packaged by your distribution may not be
new enough to build SingularityCE.

{SingularityCE} aims to maintain support for the two most recent stable versions
of Go. This corresponds to the Go Release Maintenance
Policy [https://github.com/golang/go/wiki/Go-Release-Cycle#release-maintenance]
and Security Policy [https://golang.org/security], ensuring critical bug fixes
and security patches are available for all supported language versions.

The method below is one of several ways to install and configure Go [https://golang.org/doc/install].

Note

If you have previously installed Go from a download, rather than an
operating system package, you should remove your go directory,
e.g. rm -r /usr/local/go before installing a newer version.
Extracting a new version of Go over an existing installation can lead
to errors when building Go programs, as it may leave old files, which
have been removed or replaced in newer versions.

Visit the Go download page [https://golang.org/dl/] and pick a
package archive to download. Copy the link address and download with
wget. Then extract the archive to /usr/local (or use other
instructions on go installation page).

$ export VERSION=1.20.4 OS=linux ARCH=amd64 && \
 wget https://dl.google.com/go/go$VERSION.$OS-$ARCH.tar.gz && \
 sudo tar -C /usr/local -xzvf go$VERSION.$OS-$ARCH.tar.gz && \
 rm go$VERSION.$OS-$ARCH.tar.gz

Finally, add /usr/local/go/bin to the PATH environment variable:

echo 'export PATH=$PATH:/usr/local/go/bin' >> ~/.bashrc
source ~/.bashrc

Download SingularityCE from a GitHub release

You can download SingularityCE from one of the releases. To see a full
list, visit the GitHub release page [https://github.com/sylabs/singularity/releases]. After deciding on a
release to install, you can run the following commands to proceed with
the installation.

$ export VERSION=3.11.0 && # adjust this as necessary \
 wget https://github.com/sylabs/singularity/releases/download/v${VERSION}/singularity-ce-${VERSION}.tar.gz && \
 tar -xzf singularity-ce-${VERSION}.tar.gz && \
 cd singularity-ce-${VERSION}

Compile & Install SingularityCE

SingularityCE uses a custom build system called makeit. mconfig
is called to generate a Makefile and then make is used to
compile and install.

$./mconfig && \
 make -C ./builddir && \
 sudo make -C ./builddir install

By default SingularityCE will be installed in the /usr/local
directory hierarchy. You can specify a custom directory with the
--prefix option, to mconfig:

$./mconfig --prefix=/opt/singularity

This option can be useful if you want to install multiple versions of
Singularity, install a personal version of SingularityCE on a shared
system, or if you want to remove SingularityCE easily after installing
it.

For a full list of mconfig options, run mconfig --help. Here are
some of the most common options that you may need to use when building
SingularityCE from source.

	--sysconfdir: Install read-only config files in sysconfdir. This
option is important if you need the singularity.conf file or
other configuration files in a custom location.

	--localstatedir: Set the state directory where containers are
mounted. This is a particularly important option for administrators
installing SingularityCE on a shared file system. The
--localstatedir should be set to a directory that is present on
each individual node.

	-b: Build SingularityCE in a given directory. By default this is
./builddir.

	--without-conmon: Do not build conmon, a container monitor that is
used by the singularity oci commands. conmon is bundled with
SingularityCE and will be built and installed by default. Use
--without-conmon if you wish to use a version of conmon >=2.0.24 that
is provided by your distribution rather than the bundled version. You can also
specify --without-conmon if you know you will not use the singularity
oci commands.

Installation from RPM/Deb Packages

Sylabs provides .rpm packages of SingularityCE, for
mainstream-supported versions of RHEL and derivatives (e.g. Alma Linux
/ Rocky Linux). We also provide .deb packages for current Ubuntu
LTS releases.

These packages can be downloaded from the GitHub release
page [https://github.com/sylabs/singularity/releases] and installed
using your distribution’s package manager.

The packages are provided as a convenience for users of the open
source project, and are built in our public CircleCI workflow. They are not
signed, but SHA256 sums are provided on the release page.

Configuration

SingularityCE is configured using files under etc/singularity in your
--prefix, or --syconfdir if you used that option with mconfig. In a
default installation from source without a --prefix set you will find them
under /usr/local/etc/singularity. In a default installation from RPM or Deb
packages you will find them under /etc/singularity.

You can edit these files directly, or using the SingularityCE config
global command as the root user to manage them.

singularity.conf contains the majority of options controlling the
runtime behavior of SingularityCE. Additional files control security,
network, and resource configuration. Head over to the
Configuration files section where the
files and configuration options are discussed.

Test SingularityCE

You can run a quick test of SingularityCE using a container in the
Sylabs Container Library:

$ singularity exec library://alpine cat /etc/alpine-release
3.9.2

See the user guide [https://www.sylabs.io/guides/3.11/user-guide/] for more
information about how to use SingularityCE.

Installing SingularityCE

This section will guide you through the process of installing
SingularityCE 3.11.0 via several different methods. (For
instructions on installing earlier versions of SingularityCE please see
earlier versions of the docs [https://www.sylabs.io/docs/].)

Installation on Linux

SingularityCE can be installed on any modern Linux distribution, on
bare-metal or inside a Virtual Machine. Nested installations inside
containers are not recommended, and require the outer container to be
run with full privilege.

System Requirements

SingularityCE requires ~163MiB disk space once compiled and installed.

There are no specific CPU or memory requirements at runtime, though 2GB
of RAM is recommended when building from source.

Full functionality of SingularityCE requires that the kernel supports:

	OverlayFS mounts - (minimum kernel >=3.18) Required for full
flexibility in bind mounts to containers, and to support persistent
overlays for writable containers.

	Unprivileged user namespaces - (minimum kernel >=3.8, >=3.18 recommended)
Required to run containers without root or setuid privilege. Required to
build containers unprivileged in --fakeroot mode. Required to run
containers using the experimental --oci mode.

	Unprivileged overlay - (minimum kernel >=5.11, >=5.13 recommended)
Required to use --overlay, to mount a persistent overlay directory onto
the container, when running without root or setuid.

External Binaries

Singularity depends on a number of external binaries for full
functionality. From SingularityCE 3.9, the methods that are used to find
these binaries have been standardized as below.

Configurable Paths

The following binaries are found on $PATH during build time when
./mconfig is run, and their location is added to the
singularity.conf configuration file. At runtime this configured
location is used. To specify an alternate executable, change the
relevant path entry in singularity.conf.

	cryptsetup version 2 with kernel LUKS2 support is required for
building or executing encrypted containers.

	ldconfig is used to resolve library locations / symlinks when
using the -nv or --rocm GPU support.

	nvidia-container-cli is used to configure a container for Nvidia
GPU / CUDA support when running with the experimental --nvccli
option.

For the following additional binaries, if the singularity.conf entry
is left blank, then $PATH will be searched at runtime.

	go is required to compile plugins, and must be an identical
version as that used to build SingularityCE.

	mksquashfs from squashfs-tools 4.3+ is used to create the
squashfs container filesystem that is embedded into SIF container
images. The mksquashfs procs and mksquashfs mem directives in
singularity.conf can be used to control its resource usage.

	unsquashfs from squashfs-tools 4.3+ is used to extract the
squashfs container filesystem from a SIF file when necessary.

Searching $PATH

The following utilities are always found by searching $PATH at
runtime:

	true

	mkfs.ext3 is used to create overlay images.

	cp

	dd

	newuidmap and newgidmap are distribution provided setuid
binaries used to configure subuid/gid mappings for --fakeroot in
non-setuid installs.

	crun or runc are OCI runtimes used for the singularity
oci commands and experimental --oci mode for run / shell /
exec. crun is preferred over runc if it is
available. runc is provided by a package in all common Linux
distributions. crun is packaged in more recent releases of
common Linux distributions.

	proot is an optional dependency that can be used to permit
limited unprivileged builds without user namespace / subuid
support. It is packaged in the community repositories for common
Linux distributions, and is available as a static binary from
proot-me.github.io [https://proot-me.github.io].

Bootstrap Utilities

The following utilities are required to bootstrap containerized
distributions using their native tooling:

	mount, umount, pacstrap for Arch Linux.

	mount, umount, mknod, debootstrap for Debian based
distributions.

	dnf or yum, rpm, curl for EL derived RPM based
distributions.

	uname, zypper, SUSEConnect for SLES derived RPM based
distributions.

Non-standard ldconfig / Nix & Guix Environments

If SingularityCE is installed under a package manager such as Nix or
Guix, but on top of a standard Linux distribution (e.g. CentOS or
Debian), it may be unable to correctly find the libraries for --nv
and --rocm GPU support. This issue occurs as the package manager
supplies an alternative ldconfig, which does not identify GPU
libraries installed from host packages.

To allow SingularityCE to locate the host (i.e. CentOS / Debian) GPU
libraries correctly, set ldconfig path in singularity.conf to
point to the host ldconfig. I.E. it should be set to
/sbin/ldconfig or /sbin/ldconfig.real rather than a Nix or Guix
related path.

Filesystem support / limitations

SingularityCE supports most filesystems, but there are some limitations
when installing SingularityCE on, or running containers from, common
parallel / network filesystems. In general:

	We strongly recommend installing SingularityCE on local disk on each
compute node.

	If SingularityCE is installed to a network location, a
--localstatedir should be provided on each node, and Singularity
configured to use it.

	The --localstatedir filesystem should support overlay mounts.

	TMPDIR / SINGULARITY_TMPDIR should be on a local filesystem
wherever possible.

Note

Set the --localstatedir location by by providing
--localstatedir my/dir as an option when you configure your
SingularityCE build with ./mconfig.

Disk usage at the --localstatedir location is negligible (<1MiB).
The directory is used as a location to mount the container root
filesystem, overlays, bind mounts etc. that construct the runtime
view of a container. You will not see these mounts from a host shell,
as they are made in a separate mount namespace.

Overlay support

Various features of SingularityCE, such as the --writable-tmpfs and
--overlay, options use the Linux overlay filesystem driver to
construct a container root filesystem that combines files from different
locations. Not all filesystems can be used with the overlay driver,
so when containers are run from these filesystems some SingularityCE
features may not be available.

Overlay support has two aspects:

	lowerdir support for a filesystem allows a directory on that
filesystem to act as the ‘base’ of a container. A filesystem must
support overlay lowerdir for you be able to run a Singularity
sandbox container on it, while using functionality such as
--writable-tmpfs / --overlay.

	upperdir support for a filesystem allows a directory on that
filesystem to be merged on top of a lowerdir to construct a
container. If you use the --overlay option to overlay a directory
onto a container, then the filesystem holding the overlay directory
must support upperdir.

Note that any overlay limitations mainly apply to sandbox (directory)
containers only. A SIF container is mounted into the --localstatedir
location, which should generally be on a local filesystem that supports
overlay.

Fakeroot / (sub)uid/gid mapping

When SingularityCE is run using the fakeroot option it
creates a user namespace for the container, and UIDs / GIDs in that user
namespace are mapped to different host UID / GIDs.

Most local filesystems (ext4/xfs etc.) support this uid/gid mapping in a
user namespace.

Most network filesystems (NFS/Lustre/GPFS etc.) do not support this
uid/gid mapping in a user namespace. Because the fileserver is not aware
of the mappings it will deny many operations, with ‘permission denied’
errors. This is currently a generic problem for rootless container
runtimes.

SingularityCE cache / atomic rename

SingularityCE will cache SIF container images generated from remote
sources, and any OCI/docker layers used to create them. The cache is
created at $HOME/.singularity/cache by default. The location of the
cache can be changed by setting the SINGULARITY_CACHEDIR environment
variable.

The directory used for SINGULARITY_CACHEDIR should be:

	A unique location for each user. Permissions are set on the cache so
that private images cached for one user are not exposed to another.
This means that SINGULARITY_CACHEDIR cannot be shared.

	Located on a filesystem with sufficient space for the number and size
of container images anticipated.

	Located on a filesystem that supports atomic rename, if possible.

In SingularityCE version 3.6 and above the cache is concurrency safe.
Parallel runs of SingularityCE that would create overlapping cache
entries will not conflict, as long as the filesystem used by
SINGULARITY_CACHEDIR supports atomic rename operations.

Support for atomic rename operations is expected on local POSIX
filesystems, but varies for network / parallel filesystems and may be
affected by topology and configuration. For example, Lustre supports
atomic rename of files only on a single MDT. Rename on NFS is only
atomic to a single client, not across systems accessing the same NFS
share.

If you are not certain that your $HOME or SINGULARITY_CACHEDIR
filesystems support atomic rename, do not run singularity in parallel
using remote container URLs. Instead use singularity pull to create
a local SIF image, and then run this SIF image in a parallel step. An
alternative is to use the --disable-cache option, but this will
result in each SingularityCE instance independently fetching the
container from the remote source, into a temporary location.

NFS

NFS filesystems support overlay mounts as a lowerdir only, and do
not support user-namespace (sub)uid/gid mapping.

	Containers run from SIF files located on an NFS filesystem do not
have restrictions.

	You cannot use --overlay mynfsdir/ to overlay a directory onto a
container when the overlay (upperdir) directory is on an NFS
filesystem.

	When using --fakeroot to build or run a container, your
TMPDIR / SINGULARITY_TMPDIR should not be set to an NFS
location.

	You should not run a sandbox container with --fakeroot from an
NFS location.

Lustre / GPFS / PanFS

Lustre, GPFS, and PanFS do not have sufficient upperdir or
lowerdir overlay support for certain SingularityCE features, and
do not support user-namespace (sub)uid/gid mapping.

	You cannot use --overlay or --writable-tmpfs with a sandbox
container that is located on a Lustre, GPFS, or PanFS
filesystem. SIF containers on Lustre, GPFS, and PanFS will work
correctly with these options.

	You cannot use --overlay to overlay a directory onto a
container, when the overlay (upperdir) directory is on a Lustre,
GPFS, or PanFS filesystem.

	When using --fakeroot to build or run a container, your
TMPDIR/SINGULARITY_TMPDIR should not be a Lustre, GPFS, or
PanFS location.

	You should not run a sandbox container with --fakeroot from a
Lustre, GPFS, or PanFS location.

Install from Provided RPM / Deb Packages

Sylabs provides .rpm packages of SingularityCE, for
mainstream-supported versions of RHEL and derivatives (e.g. Alma Linux
/ Rocky Linux). We also provide .deb packages for current Ubuntu
LTS releases.

These packages can be downloaded from the GitHub release
page [https://github.com/sylabs/singularity/releases]
and installed using your distribution’s package manager.

The packages are provided as a convenience for users of the open
source project, and are built in our public CircleCI workflow. They are not
signed, but SHA256 sums are provided on the release page.

Install from Source

To use the latest version of SingularityCE from GitHub you will need to
build and install it from source. This may sound daunting, but the
process is straightforward, and detailed below.

If you have an earlier version of SingularityCE installed, you should
remove it before executing the
installation commands. You will also need to install some dependencies
and install Go [https://golang.org/].

Install Dependencies

On Red Hat Enterprise Linux or CentOS install the following
dependencies:

Install basic tools for compiling
sudo yum groupinstall -y 'Development Tools'
Install RPM packages for dependencies
sudo yum install -y \
 libseccomp-devel \
 glib2-devel \
 squashfs-tools \
 cryptsetup \
 runc

On Ubuntu or Debian install the following dependencies:

Ensure repositories are up-to-date
sudo apt-get update
Install debian packages for dependencies
sudo apt-get install -y \
 build-essential \
 libseccomp-dev \
 libglib2.0-dev \
 pkg-config \
 squashfs-tools \
 cryptsetup \
 runc

Note

You can build SingularityCE without cryptsetup available,
but will not be able to use encrypted containers without it installed
on your system.

If you will not use the singularity oci commands, runc is not
required.

Install Go

SingularityCE is written in Go, and aims to maintain support for the two most
recent stable versions of Go. This corresponds to the Go Release Maintenance
Policy and Security Policy, ensuring critical bug fixes and security patches are
available for all supported language versions.

Building SingularityCE may require a newer version of Go than is available in
the repositories of your distribution. We recommend installing the latest
version of Go from the [official binaries](https://golang.org/dl/).

This is one of several ways to install and configure Go [https://golang.org/doc/install].

Note

If you have previously installed Go from a download, rather than an
operating system package, you should remove your go directory,
e.g. rm -r /usr/local/go before installing a newer version.
Extracting a new version of Go over an existing installation can lead
to errors when building Go programs, as it may leave old files, which
have been removed or replaced in newer versions.

Visit the Go download page [https://golang.org/dl/] and pick a
package archive to download. Copy the link address and download with
wget. Then extract the archive to /usr/local (or use other
instructions on go installation page).

$ export VERSION=1.20.4 OS=linux ARCH=amd64 && \
 wget https://dl.google.com/go/go$VERSION.$OS-$ARCH.tar.gz && \
 sudo tar -C /usr/local -xzvf go$VERSION.$OS-$ARCH.tar.gz && \
 rm go$VERSION.$OS-$ARCH.tar.gz

Then, set up your environment for Go.

$ echo 'export GOPATH=${HOME}/go' >> ~/.bashrc && \
 echo 'export PATH=/usr/local/go/bin:${PATH}:${GOPATH}/bin' >> ~/.bashrc && \
 source ~/.bashrc

Download SingularityCE from a release

You can download SingularityCE from one of the releases. To see a full
list, visit the GitHub release page [https://github.com/sylabs/singularity/releases]. After deciding on a
release to install, you can run the following commands to proceed with
the installation.

$ export VERSION=3.11.0 && # adjust this as necessary \
 wget https://github.com/sylabs/singularity/releases/download/v${VERSION}/singularity-ce-${VERSION}.tar.gz && \
 tar -xzf singularity-ce-${VERSION}.tar.gz && \
 cd singularity-ce-${VERSION}

Checkout Code from Git

The following commands will install SingularityCE from the GitHub repo [https://github.com/sylabs/singularity] to /usr/local. This method
will work for >=v3.11.0. To install an older tagged
release see older versions of the docs [https://www.sylabs.io/docs/].

When installing from source, you can decide to install from either a
tag, a release branch, or from the main branch.

	tag: GitHub tags form the basis for releases, so installing from
a tag is the same as downloading and installing a specific release [https://github.com/sylabs/singularity/releases]. Tags are expected
to be relatively stable and well-tested.

	release branch: A release branch represents the latest version of
a minor release with all the newest bug fixes and enhancements (even
those that have not yet made it into a point release). For instance,
to install v3.10 with the latest bug fixes and enhancements checkout
release-3.10. Release branches may be less stable than code in a
tagged point release.

	main branch: The main branch contains the latest,
bleeding edge version of SingularityCE. This is the default branch
when you clone the source code, so you don’t have to check out any
new branches to install it. The main branch changes quickly and
may be unstable.

To ensure that the SingularityCE source code is downloaded to the
appropriate directory use these commands.

$ git clone --recurse-submodules https://github.com/sylabs/singularity.git && \
 cd singularity && \
 git checkout --recurse-submodules v3.11.0

Compile Singularity

SingularityCE uses a custom build system called makeit. mconfig
is called to generate a Makefile and then make is used to
compile and install.

To support the SIF image format, automated networking setup etc., and
older Linux distributions without user namespace support, Singularity
must be make install``ed as root or with ``sudo, so it can install
the libexec/singularity/bin/starter-setuid binary with root
ownership and setuid permissions for privileged operations. If you need
to install as a normal user, or do not want to use setuid functionality
see below.

$./mconfig && \
 make -C ./builddir && \
 sudo make -C ./builddir install

By default SingularityCE will be installed in the /usr/local
directory hierarchy. You can specify a custom directory with the
--prefix option, to mconfig like so:

$./mconfig --prefix=/opt/singularity

This option can be useful if you want to install multiple versions of
SingularityCE, install a personal version of SingularityCE on a shared
system, or if you want to remove SingularityCE easily after installing
it.

For a full list of mconfig options, run mconfig --help. Here are
some of the most common options that you may need to use when building
SingularityCE from source.

	--sysconfdir: Install read-only config files in sysconfdir. This
option is important if you need the singularity.conf file or
other configuration files in a custom location.

	--localstatedir: Set the state directory where containers are
mounted. This is a particularly important option for administrators
installing SingularityCE on a shared file system. The
--localstatedir should be set to a directory that is present on
each individual node.

	-b: Build SingularityCE in a given directory. By default this is
./builddir.

	--without-conmon: Do not build the conmon OCI container monitor. Use
this option if you are certain you will not use the singularity oci
commands, or wish to use conmon >=2.0.24 provided by your distribution, and
available on $PATH.

	
	--reproducible: Enable support for reproducible builds. Ensures
	that the compiled binaries do not include any temporary paths, the
source directory path, etc. This disables support for building plugins.

Unprivileged (non-setuid) Installation

If you need to install SingularityCE as a non-root user, or do not wish
to allow the use of a setuid root binary, you can configure
SingularityCE with the --without-suid option to mconfig:

$./mconfig --without-suid --prefix=/home/dave/singularity-ce && \
 make -C ./builddir && \
 make -C ./builddir install

If you have already installed SingularityCE you can disable the setuid
flow by setting the option allow setuid = no in
etc/singularity/singularity.conf within your installation directory.

When SingularityCE does not use setuid all container execution will use
a user namespace. This requires support from your operating system
kernel, and imposes some limitations on functionality. You should review
the requirements and limitations in the user namespace section of
this guide.

Relocatable Installation

Since SingularityCE 3.8, an unprivileged (non-setuid) installation is
relocatable. As long as the structure inside the installation directory
(--prefix) is maintained, it can be moved to a different location
and SingularityCE will continue to run normally.

Relocation of a default setuid installation is not supported, as
restricted location / ownership of configuration files is important to
security.

Source bash completion file

To enjoy bash shell completion with SingularityCE commands and options,
source the bash completion file:

$. /usr/local/etc/bash_completion.d/singularity

Add this command to your ~/.bashrc file so that bash completion
continues to work in new shells. (Adjust the path if you installed
SingularityCE to a different location.)

Build and install an RPM

If you use RHEL, CentOS or SUSE, building and installing a Singularity
RPM allows your SingularityCE installation be more easily managed,
upgraded and removed. In SingularityCE >=v3.0.1 you can build an RPM
directly from the release tarball [https://github.com/sylabs/singularity/releases].

Note

Be sure to download the correct asset from the GitHub releases page [https://github.com/sylabs/singularity/releases]. It should be
named singularity-ce-<version>.tar.gz.

After installing the dependencies and
installing Go as detailed above, you are ready to
download the tarball and build and install the RPM.

$ export VERSION=3.11.0 && # adjust this as necessary \
 wget https://github.com/sylabs/singularity/releases/download/v${VERSION}/singularity-ce-${VERSION}.tar.gz && \
 rpmbuild -tb singularity-ce-${VERSION}.tar.gz && \
 sudo rpm -ivh ~/rpmbuild/RPMS/x86_64/singularity-ce-$VERSION-1.el7.x86_64.rpm && \
 rm -rf ~/rpmbuild singularity-ce-$VERSION*.tar.gz

If you encounter a failed dependency error for golang but installed it
from source, build with this command:

rpmbuild -tb --nodeps singularity-ce-${VERSION}.tar.gz

Options to mconfig can be passed using the familiar syntax to
rpmbuild. For example, if you want to force the local state
directory to /mnt (instead of the default /var) you can do the
following:

rpmbuild -tb --define='_localstatedir /mnt' singularity-ce-$VERSION.tar.gz

Note

It is very important to set the local state directory to a directory
that physically exists on nodes within a cluster when installing
SingularityCE in an HPC environment with a shared file system.

Build an RPM from Git source

Alternatively, to build an RPM from a branch of the Git repository you
can clone the repository, directly make an rpm, and use it to
install Singularity:

$./mconfig && \
make -C builddir rpm && \
sudo rpm -ivh ~/rpmbuild/RPMS/x86_64/singularity-ce-3.11.0.el7.x86_64.rpm # or whatever version you built

To build an rpm with an alternative install prefix set RPMPREFIX on
the make step, for example:

$ make -C builddir rpm RPMPREFIX=/usr/local

For finer control of the rpmbuild process you may wish to use make
dist to create a tarball that you can then build into an rpm with
rpmbuild -tb as above.

Remove an old version

In a standard installation of SingularityCE 3.0.1 and beyond (when
building from source), the command sudo make install lists all the
files as they are installed. You must remove all of these files and
directories to completely remove SingularityCE.

$ sudo rm -rf \
 /usr/local/libexec/singularity \
 /usr/local/var/singularity \
 /usr/local/etc/singularity \
 /usr/local/bin/singularity \
 /usr/local/bin/run-singularity \
 /usr/local/etc/bash_completion.d/singularity

If you anticipate needing to remove SingularityCE, it might be easier to
install it in a custom directory using the --prefix option to
mconfig. In that case SingularityCE can be uninstalled simply by
deleting the parent directory. Or it may be useful to install
SingularityCE using a package manager so that it
can be updated and/or uninstalled with ease in the future.

Testing & Checking the Build Configuration

After installation you can perform a basic test of Singularity
functionality by executing a simple container from the Sylabs Cloud
library:

$ singularity exec library://alpine cat /etc/alpine-release
3.10.0

See the user guide [https://www.sylabs.io/guides/3.11/user-guide/] for more
information about how to use SingularityCE.

singularity buildcfg

Running singularity buildcfg will show the build configuration of an
installed version of SingularityCE, and lists the paths used by
SingularityCE. Use singularity buildcfg to confirm paths are set
correctly for your installation, and troubleshoot any ‘not-found’ errors
at runtime.

$ singularity buildcfg
PACKAGE_NAME=singularity
PACKAGE_VERSION=3.11.0
BUILDDIR=/home/dtrudg/Sylabs/Git/singularity/builddir
PREFIX=/usr/local
EXECPREFIX=/usr/local
BINDIR=/usr/local/bin
SBINDIR=/usr/local/sbin
LIBEXECDIR=/usr/local/libexec
DATAROOTDIR=/usr/local/share
DATADIR=/usr/local/share
SYSCONFDIR=/usr/local/etc
SHAREDSTATEDIR=/usr/local/com
LOCALSTATEDIR=/usr/local/var
RUNSTATEDIR=/usr/local/var/run
INCLUDEDIR=/usr/local/include
DOCDIR=/usr/local/share/doc/singularity
INFODIR=/usr/local/share/info
LIBDIR=/usr/local/lib
LOCALEDIR=/usr/local/share/locale
MANDIR=/usr/local/share/man
SINGULARITY_CONFDIR=/usr/local/etc/singularity
SESSIONDIR=/usr/local/var/singularity/mnt/session

Note that the LOCALSTATEDIR and SESSIONDIR should be on local,
non-shared storage.

The list of files installed by a successful setuid installation of
SingularityCE can be found in the appendix, installed files
section.

Test Suite

The SingularityCE codebase includes a test suite that is run during
development using CI services.

If you would like to run the test suite locally you can run the test
targets from the builddir directory in the source tree:

	make check runs source code linting and dependency checks

	make unit-test runs basic unit tests

	make integration-test runs integration tests

	make e2e-test runs end-to-end tests, which exercise a large
number of operations by calling the SingularityCE CLI with different
execution profiles.

Note

Running the full test suite requires a docker installation, and
nc in order to test docker and instance/networking functionality.

SingularityCE must be installed in order to run the full test suite,
as it must run the CLI with setuid privilege for the starter-suid
binary.

Warning

sudo privilege is required to run the full tests, and you should
not run the tests on a production system. We recommend running the
tests in an isolated development or build environment.

Installation on Windows or Mac

Linux container runtimes like SingularityCE cannot run natively on
Windows or Mac because of basic incompatibilities with the host kernel.
(Contrary to a popular misconception, MacOS does not run on a Linux
kernel. It runs on a kernel called Darwin originally forked from BSD.)

For this reason, the SingularityCE community maintains a set of Vagrant
Boxes via Vagrant Cloud [https://www.vagrantup.com/], one of
Hashicorp’s [https://www.hashicorp.com/#open-source-tools] open
source tools. The current versions can be found under the sylabs [https://app.vagrantup.com/sylabs] organization.

Windows

Install the following programs:

	Git for Windows [https://git-for-windows.github.io/]

	VirtualBox for Windows [https://www.virtualbox.org/wiki/Downloads]

	Vagrant for Windows [https://www.vagrantup.com/downloads.html]

	Vagrant Manager for Windows [http://vagrantmanager.com/downloads/]

Mac

SingularityCE is available via Vagrant (installable with Homebrew [https://brew.sh] or manually)

To use Vagrant via Homebrew:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
$ brew install --cask virtualbox vagrant vagrant-manager

SingularityCE Vagrant Box

Run Git Bash (Windows) or open a terminal (Mac) and create and enter a
directory to be used with your Vagrant VM.

$ mkdir vm-singularity-ce && \
 cd vm-singularity-ce

If you have already created and used this folder for another VM, you
will need to destroy the VM and delete the Vagrantfile.

$ vagrant destroy && \
 rm Vagrantfile

Then issue the following commands to bring up the Virtual Machine.
(Substitute a different value for the $VM variable if you like.)

$ export VM=sylabs/singularity-ce-3.8-ubuntu-bionic64 && \
 vagrant init $VM && \
 vagrant up && \
 vagrant ssh

You can check the installed version of SingularityCE with the following:

vagrant@vagrant:~$ singularity version
3.11.0

Of course, you can also start with a plain OS Vagrant box as a base and
then install SingularityCE using one of the above methods for Linux.

SingularityCE Docker Image

It is possible to use a Dockerized Singularity, here is a sample
compose.yaml (Singularity version 3.7.4) for use with Docker
Compose:

services:
 singularity:
 image: quay.io/singularity/singularity:v3.7.4-slim
 stdin_open: true
 tty: true
 privileged: true
 volumes:
 - .:/root
 entrypoint: ["/bin/sh"]

Singularity in Docker can have various disadvantages, but basic
container operations will work. Currently, the intended use case is
continuous integration, meaning that you should be able to build a
Singularity container using this Docker Compose file. For more
information see issue#5 [https://github.com/sylabs/singularity-admindocs/issues/5#issuecomment-852307931]
and the image’s source repo [https://github.com/singularityhub/singularity-docker#use-cases]

SingularityCE Configuration Files

As a SingularityCE Administrator, you will have access to various
configuration files, that will let you manage container resources, set
security restrictions and configure network options etc, when
installing SingularityCE across the system. All of these files can be
found in /usr/local/etc/singularity by default for installations
from source (though the location may differ based on options passed
during the installation). For installations from RPM or Deb packages
you will find the configuration files in /etc/singularity. This
section will describe the configuration files and the various
parameters contained by them.

singularity.conf

Most of the configuration options are set using the file
singularity.conf that defines the global configuration for
SingularityCE across the entire system. Using this file, system
administrators can influence the behavior of SingularityCE and
restrict the functionality that users can access. As a security
measure, for setuid installations of SingularityCE,
singularity.conf must be owned by root and must not be writable by
users or SingularityCE will refuse to run. This is not the case for
non-setuid installations that will only ever execute with user
privilege and thus do not require such limitations.

The options set via singularity.conf are listed below. Options are
grouped together based on relevance. The actual order of options within
singularity.conf may differ.

Setuid and Capabilities

allow setuid: To use all features of SingularityCE containers,
SingularityCE will need to have access to some privileged system calls.
SingularityCE achieves this by using a helper binary with the setuid
bit enabled. The allow-setuid option lets you enable/disable users
ability to utilize these binaries within SingularityCE. By default, it
is set to “yes”, but when disabled, various SingularityCE features will
not function. Please see Unprivileged Installations for more information about running SingularityCE
without setuid enabled.

root default capabilities: SingularityCE allows the specification of
capabilities kept by the root user when running a container by default.
Options include:

	full: all capabilities are maintained, this gives the same behavior
as the --keep-privs option.

	file: only capabilities granted for root in
etc/singularity/capability.json are maintained.

	no: no capabilities are maintained, this gives the same behavior as
the --no-privs option.

Note

The root user can manage the capabilities granted to individual
containers when they are launched through the --add-caps and
drop-caps flags. Please see Linux Capabilities [https://sylabs.io/guides/3.11/user-guide/security_options.html#linux-capabilities]
in the user guide for more information.

Loop Devices

SingularityCE uses loop devices to facilitate the mounting of container file systems from SIF and other images.

max loop devices: This option allows an admin to limit the total
number of loop devices SingularityCE will consume at a given time.

shared loop devices: This allows containers running the same image
to share a single loop device. This minimizes loop device usage and
helps optimize kernel cache usage. Enabling this feature can be
particularly useful for MPI jobs.

Namespace Options

allow pid ns: This option determines if users can leverage the PID
namespace when running their containers through the --pid flag.

Note

Using the PID namespace can confuse the process tracking of some
resource managers, as well as some MPI implementations.

Configuration Files

SingularityCE can automatically create or modify several system files
within containers to ease usage.

Note

These options will have no effect if the file does not exist within
the container, or overlay or underlay support are enabled.

config passwd: This option determines if SingularityCE should
automatically append an entry to /etc/passwd for the user running
the container.

config group: This option determines if SingularityCE should
automatically append the calling user’s group entries to the containers
/etc/group.

config resolv_conf: This option determines if SingularityCE should
automatically bind the host’s /etc/resolv.conf within the container.

Session Directory and System Mounts

sessiondir max size: In order for the SingularityCE runtime to run
a container it needs to create a temporary in-memory sessiondir as
a location to assemble various components of the container, including
mounting filesystems over the base image. In addition, this sessiondir
will hold files that are written to the container when
--writable-tmpfs is used, plus isolated temporary filesystems in
--contain mode. The default value from SingularityCE 3.11 is
64MiB. If users commonly run containers with --writable-tmpfs,
--contain, or in --oci mode, this value should be increased to
accommodate their workflows. The tmpfs will grow to the specified
maximum size, as required. Memory is not allocated ahead of usage.

mount proc: This option determines if SingularityCE should
automatically bind mount /proc within the container.

mount sys: This option determines if SingularityCE should
automatically bind mount /sys within the container.

mount dev: Should be set to “YES”, if you want SingularityCE to
automatically bind mount a complete /dev tree within the container.
If set to minimal, then only /dev/null, /dev/zero,
/dev/random, /dev/urandom, and /dev/shm will be included.

mount devpts: This option determines if SingularityCE will mount a
new instance of devpts when there is a minimal /dev
directory as explained above, or when the --contain option is
passed.

Note

This requires either a kernel configured with
CONFIG_DEVPTS_MULTIPLE_INSTANCES=y, or a kernel version at or
newer than 4.7.

mount home: When this option is enabled, SingularityCE will
automatically determine the calling user’s home directory and attempt to
mount it into the container.

mount tmp: When this option is enabled, SingularityCE will
automatically bind mount /tmp and /var/tmp into the container
from the host. If the --contain option is passed, SingularityCE will
create both locations within the sessiondir or within the directory
specified by the --workdir option if that is passed as well.

mount hostfs: This option will cause SingularityCE to probe the host
for all mounted filesystems and bind those into containers at runtime.

mount slave: SingularityCE automatically mounts a handful host
system directories to the container by default. This option determines
if filesystem changes on the host should automatically be propagated to
those directories in the container.

Note

This should be set to yes when autofs mounts occurring on the host
system should be reflected up in the container.

memory fs type: This option allows admins to choose the temporary
filesystem used by SingularityCE. Temporary filesystems are primarily
used for system directories like /dev when the host system directory
is not mounted within the container.

Note

For Cray CLE 5 and 6, up to CLE 6.0.UP05, there is an issue (kernel
panic) when Singularity uses tmpfs, so on affected systems it’s
recommended to set this value to ramfs to avoid a kernel panic.

Bind Mount Management

bind path: This option is used to define a list of files or
directories to automatically be made available when SingularityCE runs a
container. In order to successfully mount listed paths the file or
directory must exist within the container, or SingularityCE must be
configured with either overlay or underlay support enabled.

Note

This option is ignored when containers are invoked with the
--contain option.

You can define the a bind point where the source and destination are
identical:

bind path = /etc/localtime

Or you can specify different source and destination locations using:

bind path = /etc/singularity/default-nsswitch.conf:/etc/nsswitch.conf

user bind control: This allows admins to decide if users can define
bind points at runtime. By Default, this option is set to YES, which
means users can specify bind points, scratch and tmp locations.

Limiting Container Execution

Warning

If unprivileged user namespace creation is allowed on a system, a user can
supply and use their own unprivileged installation of Singularity or another
container runtime to bypass container limits. They may also be able to use
standard system tools such as unshare, nsenter, and FUSE mounts to
access / execute arbitrary containers without installing any runtime.

The ‘limit container’ and ‘allow container’ directives are not effective if
unprivileged user namespaces are enabled. They are only effectively applied
when Singularity is running using the native runtime in setuid mode, and
unprivileged container execution is not possible on the host.

You must disable unprivileged user namespace creation on the host if you
rely on the these directives to limit container execution. This will
disable OCI mode, which is unprivileged and cannot enforce these limits.

There are several ways to limit container execution as an admin listed
below. If stricter controls are required, check out the Execution
Control List.

limit container owners: This restricts container execution to only
allow containers that are owned by the specified user.

Note

This feature will only apply when SingularityCE is running in SUID
mode and the user is non-root. By default this is set to NULL.

limit container groups: This restricts container execution to only
allow containers that are owned by the specified group.

Note

This feature will only apply when SingularityCE is running in SUID
mode and the user is non-root. By default this is set to NULL.

limit container paths: This restricts container execution to only
allow containers that are located within the specified path prefix.

Note

This feature will only apply when SingularityCE is running in SUID
mode and the user is non-root. By default this is set to NULL.

allow container ${type}: This option allows admins to limit the
types of image formats that can be leveraged by users with
SingularityCE.

	allow container sif permits / denies execution of unencrypted SIF
containers.

	allow container encrypted permits / denies execution of SIF
containers with an encrypted root filesystem.

	allow container squashfs permits / denies execution of bare
SquashFS image files. E.g. Singularity 2.x images.

	allow container extfs permits / denies execution of bare EXT
image files.

	allow container dir permits / denies execution of sandbox
directory containers.

Note

These limitations do not apply to the root user.

This behavior differs from SingularityCE versions before 3.9, where
the allow container squashfs/extfs directives also applied to the
filesystem embedded in a SIF image.

Disabling Kernel Filesystem Mounts

When running in setuid mode, SingularityCE will mount extfs and squashfs
filesystems using the kernel’s filesystem drivers. These mounts are performed
for standalone or SIF container images, overlay images or partitions,
that use extfs or squashfs formats.

Options in singularity.conf allow these mounts to be disabled, to e.g. work
around a kernel vulnerability that cannot be patched in a timely manner. Note
that disabling kernel mounts will result in a significant loss of functionality
in setuid mode.

allow kernel squashfs: Defaults to yes. When set to no, SingularityCE will not
mount squashfs filesystems using the kernel squashfs driver.

allow kernel extfs: Defaults to yes. When set to no, SingularityCE will not
mount extfs filesystems using the kernel extfs driver.

Networking Options

The --network option can be used to specify a CNI networking
configuration that will be used when running a container with network
virtualization [https://sylabs.io/guides/3.11/user-guide/networking.html].
Unrestricted use of CNI network configurations requires root privilege,
as certain configurations may disrupt the host networking environment.

SingularityCE 3.8 allows specific users or groups to be granted the
ability to run containers with administrator specified CNI
configurations.

allow net users: Allow specified root administered CNI network
configurations to be used by the specified list of users. By default
only root may use CNI configuration, except in the case of a fakeroot
execution where only 40_fakeroot.conflist is used. This feature only
applies when SingularityCE is running in SUID mode and the user is
non-root.

allow net groups: Allow specified root administered CNI network
configurations to be used by the specified list of users. By default
only root may use CNI configuration, except in the case of a fakeroot
execution where only 40_fakeroot.conflist is used. This feature only
applies when SingularityCE is running in SUID mode and the user is
non-root.

allow net networks: Specify the names of CNI network configurations
that may be used by users and groups listed in the allow net users /
allow net groups directives. Thus feature only applies when
SingularityCE is running in SUID mode and the user is non-root.

GPU Options

SingularityCE provides integration with GPUs in order to facilitate GPU
based workloads seamlessly. Both options listed below are particularly
useful in GPU only environments. For more information on using GPUs with
SingularityCE checkout GPU Library Configuration.

always use nv: Enabling this option will cause every action command
(exec/shell/run/instance) to be executed with the --nv option
implicitly added.

always use rocm: Enabling this option will cause every action
command (exec/shell/run/instance) to be executed with the --rocm
option implicitly added.

Supplemental Filesystems

enable fusemount: This will allow users to mount fuse filesystems
inside containers using the --fusemount flag.

enable overlay: This option will allow SingularityCE to create bind
mounts at paths that do not exist within the container image. This
option can be set to try, which will try to use an overlayfs. If it
fails to create an overlayfs in this case the bind path will be silently
ignored.

enable underlay: This option will allow SingularityCE to create bind
mounts at paths that do not exist within the container image, just like
enable overlay, but instead using an underlay. This is suitable for
systems where overlay is not possible or not working. If the overlay
option is available and working, it will be used instead.

CNI Configuration and Plugins

cni configuration path: This option allows admins to specify a
custom path for the CNI configuration that SingularityCE will use for
Network Virtualization [https://sylabs.io/guides/3.11/user-guide/networking.html].

cni plugin path: This option allows admins to specify a custom path
for SingularityCE to access CNI plugin executables. Check out the
Network Virtualization [https://sylabs.io/guides/3.11/user-guide/networking.html]
section of the user guide for more information.

External Binaries

SingularityCE calls a number of external binaries for full
functionality. The paths for certain critical binaries can be set in
singularity.conf. At build time, mconfig will set initial values
for these, by searching on the $PATH environment variable. You can
override which external binaries are called by changing the value in
singularity.conf.

cryptsetup path: Path to the cryptsetup executable, used to work
with encrypted containers. Must be owned by root for security reasons.

ldconfig path: Path to the ldconfig executable, used to find GPU
libraries. Must be owned by root for security reasons.

nvidia-container-cli path: Path to the nvidia-container-cli
executable, used to find GPU libraries and configure the container when
running with the --nvccli option. Must be owned by root for security
reasons.

For the following additional binaries, if the singularity.conf entry
is left blank, then $PATH will be searched at runtime.

go path: Path to the go executable, used to compile plugins.

mksquashfs path: Path to the mksquashfs executable, used to create
SIF and SquashFS containers.

mksquashfs procs: Allows the administrator to specify the number of
CPUs that mksquashfs may use when building an image. The fewer
processors the longer it takes. To use all available CPU’s set this to
0.

mksquashfs mem: Allows the administrator to set the maximum amount
of memory that mksquashfs nay use when building an image. e.g. 1G for
1gb or 500M for 500mb. Restricting memory can have a major impact on the
time it takes mksquashfs to create the image. NOTE: This functionality
did not exist in squashfs-tools prior to version 4.3. If using an
earlier version you should not set this.

unsquashfs path: Path to the unsquashfs executable, used to extract
SIF and SquashFS containers.

Concurrent Downloads

SingularityCE 3.9 and above will pull library:// container images
using multiple concurrent downloads of parts of the image. This speeds
up downloads vs using a single stream. The defaults are generally
appropriate for the Sylabs Cloud, but may be tuned for your network
conditions, or if you are pulling from a different library server.

download concurrency: specifies how many concurrent streams when
downloading (pulling) an image from cloud library.

download part size: specifies the size of each part (bytes) when
concurrent downloads are enabled.

download buffer size: specifies the transfer buffer size (bytes)
when concurrent downloads are enabled.

Cgroups Options

systemd cgroups: specifies whether to use systemd to manage container
cgroups. Required (with cgroups v2) for unprivileged users to apply resource
limits on containers. If set to no, SingularityCE will directly manage
cgroups via the cgroupfs.

Experimental Options

sif fuse: If set to yes, always attempt to mount a SIF image using
squashfuse when running in unprivileged / user namespace flows. Requires
squashfuse and fusermount on $PATH. Will fall back to extracting
the SIF file on failure.

Updating Configuration Options

In order to manage this configuration file, SingularityCE has a config
global command group that allows you to get, set, reset, and unset
values through the CLI. It’s important to note that these commands must
be run with elevated privileges because the singularity.conf can
only be modified by an administrator.

Example

In this example we will changing the bind path option described
above. First we can see the current list of bind paths set within our
system configuration:

$ sudo singularity config global --get "bind path"
/etc/localtime,/etc/hosts

Now we can add a new path and verify it was successfully added:

$ sudo singularity config global --set "bind path" /etc/resolv.conf
$ sudo singularity config global --get "bind path"
/etc/resolv.conf,/etc/localtime,/etc/hosts

From here we can remove a path with:

$ sudo singularity config global --unset "bind path" /etc/localtime
$ sudo singularity config global --get "bind path"
/etc/resolv.conf,/etc/hosts

If we want to reset the option to the default at installation, then we
can reset it with:

$ sudo singularity config global --reset "bind path"
$ sudo singularity config global --get "bind path"
/etc/localtime,/etc/hosts

And now we are back to our original option settings. You can also test
what a change would look like by using the --dry-run option in
conjunction with the above commands. Instead of writing to the
configuration file, it will output what would have been written to the
configuration file if the command had been run without the --dry-run
option:

$ sudo singularity config global --dry-run --set "bind path" /etc/resolv.conf
SINGULARITY.CONF
This is the global configuration file for Singularity. This file controls
[...]
BIND PATH: [STRING]
DEFAULT: Undefined
Define a list of files/directories that should be made available from within
the container. The file or directory must exist within the container on
which to attach to. you can specify a different source and destination
path (respectively) with a colon; otherwise source and dest are the same.
NOTE: these are ignored if singularity is invoked with --contain.
bind path = /etc/resolv.conf
bind path = /etc/localtime
bind path = /etc/hosts
[...]
$ sudo singularity config global --get "bind path"
/etc/localtime,/etc/hosts

Above we can see that /etc/resolv.conf is listed as a bind path in
the output of the --dry-run command, but did not affect the actual
bind paths of the system.

cgroups.toml

The cgroups (control groups) functionality of the Linux kernel allows
you to limit and meter the resources used by a process, or group of
processes. Using cgroups you can limit memory and CPU usage. You can
also rate limit block IO, network IO, and control access to device
nodes.

There are two versions of cgroups in common use. Cgroups v1 sets
resource limits for a process within separate hierarchies per resource
class. Cgroups v2, the default in newer Linux distributions, implements
a unified hierarchy, simplifying the structure of resource limits on
processes.

	v1 documentation:
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

	v2 documentation:
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

SingularityCE 3.9 and above can apply resource limitations to systems
configured for both cgroups v1 and the v2 unified hierarchy. Resource
limits are specified using a TOML file that represents the resources
section of the OCI runtime-spec:
https://github.com/opencontainers/runtime-spec/blob/master/config-linux.md#control-groups

On a cgroups v1 system the resources configuration is applied directly.
On a cgroups v2 system the configuration is translated and applied to
the unified hierarchy.

Under cgroups v1, access restrictions for device nodes are managed
directly. Under cgroups v2, the restrictions are applied by attaching
eBPF programs that implement the requested access controls.

Examples

To apply resource limits to a container, use the --apply-cgroups
flag, which takes a path to a TOML file specifying the cgroups
configuration to be applied:

$ singularity shell --apply-cgroups /path/to/cgroups.toml my_container.sif

Note

The --apply-cgroups option requires cgroups v2 to be used without root
privileges.

Limiting memory

To limit the amount of memory that your container uses to 500MB
(524288000 bytes), set a limit value inside the [memory] section
of your cgroups TOML file:

[memory]
 limit = 524288000

Start your container, applying the toml file, e.g.:

$ singularity run --apply-cgroups path/to/cgroups.toml library://alpine

Limiting CPU

CPU usage can be limited using different strategies, with limits
specified in the [cpu] section of the TOML file.

shares

This corresponds to a ratio versus other cgroups with cpu shares.
Usually the default value is 1024. That means if you want to allow
to use 50% of a single CPU, you will set 512 as value.

[cpu]
 shares = 512

A cgroup can get more than its share of CPU if there are enough idle CPU
cycles available in the system, due to the work conserving nature of the
scheduler, so a contained process can consume all CPU cycles even with a
ratio of 50%. The ratio is only applied when two or more processes
conflicts with their needs of CPU cycles.

quota/period

You can enforce hard limits on the CPU cycles a cgroup can consume, so
contained processes can’t use more than the amount of CPU time set for
the cgroup. quota allows you to configure the amount of CPU time
that a cgroup can use per period. The default is 100ms (100000us). So if
you want to limit amount of CPU time to 20ms during period of 100ms:

[cpu]
 period = 100000
 quota = 20000

cpus/mems

You can also restrict access to specific CPUs (cores) and associated
memory nodes by using cpus/mems fields:

[cpu]
 cpus = "0-1"
 mems = "0-1"

Where container has limited access to CPU 0 and CPU 1.

Note

It’s important to set identical values for both cpus and
mems.

Limiting IO

To control block device I/O, applying limits to competing container, use
the [blockIO] section of the TOML file:

[blockIO]
 weight = 1000
 leafWeight = 1000

weight and leafWeight accept values between 10 and 1000.

weight is the default weight of the group on all the devices until
and unless overridden by a per device rule.

leafWeight relates to weight for the purpose of deciding how heavily
to weigh tasks in the given cgroup while competing with the cgroup’s
child cgroups.

To apply limits to specific block devices, you must set configuration
for specific device major/minor numbers. For example, to override
weight/leafWeight for /dev/loop0 and /dev/loop1 block
devices, set limits for device major 7, minor 0 and 1:

[blockIO]
 [[blockIO.weightDevice]]
 major = 7
 minor = 0
 weight = 100
 leafWeight = 50
 [[blockIO.weightDevice]]
 major = 7
 minor = 1
 weight = 100
 leafWeight = 50

You can also limit the IO read/write rate to a specific absolute value,
e.g. 16MB per second for the /dev/loop0 block device. The rate
is specified in bytes per second.

[blockIO]
 [[blockIO.throttleReadBpsDevice]]
 major = 7
 minor = 0
 rate = 16777216
 [[blockIO.throttleWriteBpsDevice]]
 major = 7
 minor = 0
 rate = 16777216

Other limits

SingularityCE can apply all resource limits that are valid in the OCI
runtime-spec resources section, including unified cgroups v2
constraints. It is most compatible, however, to use the cgroups v1 limits,
which will be translated to v2 format when applied on a cgroups v2 system.

See
https://github.com/opencontainers/runtime-spec/blob/master/config-linux.md#control-groups
for information about the available limits. Note that SingularityCE uses
TOML format for the configuration file, rather than JSON.

ecl.toml

The execution control list that can be used to restrict the execution of
SIF files by signing key is defined here. You can authorize the
containers by validating both the location of the SIF file in the
filesystem and by checking against a list of signing entities.

Warning

If unprivileged user namespace creation is allowed on a system, a user can
supply and use their own unprivileged installation of Singularity or another
container runtime to bypass container limits. They may also be able to use
standard system tools such as unshare, nsenter, and FUSE mounts to
access / execute arbitrary containers without installing any runtime.

The ECL is not effective if unprivileged user namespaces are enabled. It is
only effectively applied when Singularity is running using the native runtime
in setuid mode, and unprivileged container execution is not possible on the
host.

You must disable unprivileged user namespace creation on the host if you
rely on the ECL limit container execution. This will disable OCI mode,
which is unprivileged and cannot enforce these limits.

Warning

The ECL configuration applies to SIF container images only. To lock
down execution fully you should disable execution of other container
types (squashfs/extfs/dir) via the singularity.conf file allow
container settings.

[[execgroup]]
 tagname = "group2"
 mode = "whitelist"
 dirpath = "/tmp/containers"
 keyfp = ["7064B1D6EFF01B1262FED3F03581D99FE87EAFD1"]

Only the containers running from and signed with above-mentioned path
and keys will be authorized to run.

Three possible list modes you can choose from:

Whitestrict: The SIF must be signed by all of the keys mentioned.

Whitelist: As long as the SIF is signed by one or more of the keys,
the container is allowed to run.

Blacklist: Only the containers whose keys are not mentioned in the
group are allowed to run.

Note

The ECL checks will use the new signature format introduced in
SingularityCE 3.6.0. Containers signed with older versions of
Singularity SingularityCE will not pass ECL checks.

To temporarily permit the use of legacy insecure signatures, set
legacyinsecure = true in ecl.toml.

Managing ECL public keys

Since SingularityCE 3.7.0 a global keyring is used for ECL signature
verification. This keyring can be administered using the --global
flag for the following commands:

	singularity key import (root user only)

	singularity key pull (root user only)

	singularity key remove (root user only)

	singularity key export

	singularity key list

Note

For security reasons, it is not possible to import private keys into
this global keyring because it must be accessible by users and is
stored in the file SYSCONFDIR/singularity/global-pgp-public.

GPU Library Configuration

When a container includes a GPU enabled application, SingularityCE (with
the --nv or --rocm options) can properly inject the required
Nvidia or AMD GPU driver libraries into the container, to match the
host’s kernel. The GPU /dev entries are provided in containers run
with --nv or --rocm even if the --contain option is used to
restrict the in-container device tree.

Compatibility between containerized CUDA/ROCm/OpenCL applications and
host drivers/libraries is dependent on the versions of the GPU compute
frameworks that were used to build the applications. Compatibility and
usage information is discussed in the ‘GPU Support’ section of the user
guide [https://www.sylabs.io/guides/3.11/user-guide/]

NVIDIA GPUs / CUDA

The nvliblist.conf configuration file is used to specify libraries
and executables that need to be injected into the container when running
SingularityCE with the --nv Nvidia GPU support option. The provided
nvliblist.conf is suitable for CUDA 11, but may need to be modified
if you need to include additional libraries, or further libraries are
added to newer versions of the Nvidia driver/CUDA distribution.

When adding new entries to nvliblist.conf use the bare filename of
executables, and the xxxx.so form of libraries. Libraries are
resolved via ldconfig -p, and exectuables are found by searching
$PATH.

Experimental nvidia-container-cli Support

The nvidia-container-cli [https://github.com/NVIDIA/libnvidia-container] tool is Nvidia’s
officially support method for configuring containers to use a GPU. It is
targeted at OCI container runtimes.

SingularityCE 3.9 introduces an experimental --nvccli option, which
will call out to nvidia-container-cli for container GPU setup,
rather than use the nvliblist.conf approach.

To use --nvccli a root-owned nvidia-container-cli binary must be
present on the host. The binary that is run is controlled by the
nvidia-container-cli directive in singularity.conf. During
installation of SingularityCE, the ./mconfig step will set the
correct value in singularity.conf if nvidia-container-cli is
found on the $PATH. If the value of nvidia-container-cli path is
empty, SingularityCE will look for the binary on $PATH at runtime.

Note

To prevent use of nvidia-container-cli via the --nvccli flag,
you may set nvidia-container-cli path to /bin/false in
singularity.conf.

nvidia-container-cli is run as the root user during setuid
operation of SingularityCE. The container starter process grants a
number of Linux capabilities to nvidia-container-cli, which are
required for it to configure the container for GPU operation. The
operations performed by nvidia-container-cli are broadly similar to
those which SingularityCE carries out when setting up a GPU container
from nvliblist.conf.

AMD Radeon GPUs / ROCm

The rocmliblist.conf file is used to specify libraries and
executables that need to be injected into the container when running
SingularityCE with the --rocm Radeon GPU support option. The
provided rocmliblist.conf is suitable for ROCm 4.0, but may need to
modified if you need to include additional libraries, or further
libraries are added to newer versions of the ROCm distribution.

When adding new entries to rocmlist.conf use the bare filename of
executables, and the xxxx.so form of libraries. Libraries are
resolved via ldconfig -p, and exectuables are found by searching
$PATH.

GPU liblist format

The nvliblist.conf and rocmliblist files list the basename of
executables and libraries to be bound into the container, without path
information.

Binaries are found by searching $PATH:

put binaries here
In shared environments you should ensure that permissions on these files
exclude writing by non-privileged users.
rocm-smi
rocminfo

Libraries should be specified without version information, i.e.
libname.so, and are resolved using ldconfig.

put libs here (must end in .so)
libamd_comgr.so
libcomgr.so
libCXLActivityLogger.so

If you receive warnings that binaries or libraries are not found, ensure
that they are in a system path (binaries), or available in paths
configured in /etc/ld.so.conf (libraries).

capability.json

Warning

It is extremely important to recognize that granting users Linux
capabilities with the capability command group is usually
identical to granting those users root level access on the host
system. Most if not all capabilities will allow users to “break
out” of the container and become root on the host. This feature is
targeted toward special use cases (like cloud-native architectures)
where an admin/developer might want to limit the attack surface
within a container that normally runs as root. This is not a good
option in multi-tenant HPC environments where an admin wants to grant
a user special privileges within a container. For that and similar
use cases, the fakeroot feature is a better option.

SingularityCE provides full support for admins to grant and revoke Linux
capabilities on a user or group basis. The capability.json file is
maintained by SingularityCE in order to manage these capabilities. The
capability command group allows you to add, drop, and
list capabilities for users and groups.

For example, let us suppose that we have decided to grant a user (named
pinger) capabilities to open raw sockets so that they can use
ping in a container where the binary is controlled via capabilities.

To do so, we would issue a command such as this:

$ sudo singularity capability add --user pinger CAP_NET_RAW

This means the user pinger has just been granted permissions
(through Linux capabilities) to open raw sockets within SingularityCE
containers.

We can check that this change is in effect with the capability list
command.

$ sudo singularity capability list --user pinger
CAP_NET_RAW

To take advantage of this new capability, the user pinger must also
request the capability when executing a container with the
--add-caps flag. pinger would need to run a command like this:

$ singularity exec --add-caps CAP_NET_RAW \
 library://sylabs/tests/ubuntu_ping:v1.0 ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=52 time=73.1 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 73.178/73.178/73.178/0.000 ms

If we decide that it is no longer necessary to allow the user pinger
to open raw sockets within SingularityCE containers, we can revoke the
appropriate Linux capability like so:

$ sudo singularity capability drop --user pinger CAP_NET_RAW

Now if pinger tries to use CAP_NET_RAW, SingularityCE will not
give the capability to the container and ping will fail to create a
socket:

$ singularity exec --add-caps CAP_NET_RAW \
 library://sylabs/tests/ubuntu_ping:v1.0 ping -c 1 8.8.8.8
WARNING: not authorized to add capability: CAP_NET_RAW
ping: socket: Operation not permitted

The capability add and drop subcommands will also accept the
case insensitive keyword all to grant or revoke all Linux
capabilities to a user or group.

For more information about individual Linux capabilities check out the
man pages [http://man7.org/linux/man-pages/man7/capabilities.7.html]
or use the capability avail command to output available capabilities
with a description of their behaviors.

seccomp-profiles

Secure Computing (seccomp) Mode is a feature of the Linux kernel that
allows an administrator to filter system calls being made from a
container. Profiles made up of allowed and restricted calls can be
passed to different containers. Seccomp provides more control than
capabilities alone, giving a smaller attack surface for an attacker to
work from within a container.

You can set the default action with defaultAction for a non-listed
system call. Example: SCMP_ACT_ALLOW filter will allow all the
system calls if it matches the filter rule and you can set it to
SCMP_ACT_ERRNO which will have the thread receive a return value of
errno if it calls a system call that matches the filter rule. The file
is formatted in a way that it can take a list of additional system calls
for different architecture and SingularityCE will automatically take
syscalls related to the current architecture where it’s been executed.
The include/exclude-> caps section will include/exclude the
listed system calls if the user has the associated capability.

Use the --security option to invoke the container like:

$ sudo singularity shell --security seccomp:/home/david/my.json my_container.sif

For more insight into security options, network options, cgroups,
capabilities, etc, please check the Userdocs [https://www.sylabs.io/guides/3.11/user-guide/] and it’s
Appendix [https://www.sylabs.io/guides/3.11/user-guide/appendix.html].

remote.yaml

System-wide remote endpoints are defined in a configuration file
typically located at /usr/local/etc/singularity/remote.yaml (this
location may vary depending on installation parameters) and can be
managed by administrators with the remote command group.

Remote Endpoints

Sylabs introduced the online Sylabs Cloud [https://cloud.sylabs.io/home] to enable users to Create [https://cloud.sylabs.io/builder], Secure [https://cloud.sylabs.io/keystore?sign=true], and Share [https://cloud.sylabs.io/library/guide#create] their container images
with others.

SingularityCE allows users to login to an account on the Sylabs Cloud,
or configure SingularityCE to use an API compatible container service
such as a local installation of SingularityCE Enterprise, which provides
an on-premise private Container Library, Remote Builder and Key Store.

Note

A fresh installation of SingularityCE is automatically configured to
connect to the public Sylabs Cloud [https://cloud.sylabs.io]
services.

Examples

Use the remote command group with the --global flag to create a
system-wide remote endpoint:

$ sudo singularity remote add --global company-remote https://enterprise.example.com
INFO: Remote "company-remote" added.
INFO: Global option detected. Will not automatically log into remote.

Conversely, to remove a system-wide endpoint:

$ sudo singularity remote remove --global company-remote
INFO: Remote "company-remote" removed.

Note

Once users log in to a system wide endpoint, a copy of the endpoint
will be listed in a their ~/.singularity/remote.yaml file. This
means modifications or removal of the system-wide endpoint will not
be reflected in the users configuration unless they remove the
endpoint themselves.

Exclusive Endpoint

SingularityCE 3.7 introduces the ability for an administrator to make a
remote the only usable remote for the system by using the
--exclusive flag:

$ sudo singularity remote use --exclusive company-remote
INFO: Remote "company-remote" now in use.
$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE INSECURE
SylabsCloud cloud.sylabs.io NO YES NO NO
company-remote enterprise.example.com YES YES YES NO
myremote enterprise.example.com NO NO NO NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.example.com YES NO 1*

* Active cloud services keyserver

Insecure (HTTP) Endpoints

From SingularityCE 3.9, if you are using a endpoint that exposes its
service discovery file over an insecure HTTP connection only, it can be
added by specifying the --insecure flag:

$ sudo singularity remote add --global --insecure test http://test.example.com
INFO: Remote "test" added.
INFO: Global option detected. Will not automatically log into remote.

This flag controls HTTP vs HTTPS for service discovery only. The
protocol used to access individual library, build and keyserver URLs is
set by the service discovery file.

Additional Information

For more details on the remote command group and managing remote
endpoints, please check the Remote Userdocs [https://www.sylabs.io/guides/3.11/user-guide/endpoint.html].

Keyserver Configuration

By default, SingularityCE will use the keyserver correlated to the
active cloud service endpoint. This behavior can be changed or
supplemented via the add-keyserver and remove-keyserver
commands. These commands allow an administrator to create a global list
of key servers used to verify container signatures by default.

For more details on the remote command group and managing
keyservers, please check the Remote Userdocs [https://www.sylabs.io/guides/3.11/user-guide/endpoint.html].

User Namespaces & Fakeroot

User namespaces are an isolation feature that allow processes to run
with different user identifiers and/or privileges inside that namespace
than are permitted outside. A user may have a uid of 1001 on a
system outside of a user namespace, but run programs with a different
uid with different privileges inside the namespace.

User namespaces are used with containers to make it possible to set up a
container without privileged operations, and so that a normal user can
act as root inside a container to perform administrative tasks, without
being root on the host outside.

SingularityCE uses user namespaces in the following situations:

	When the setuid workflow is disabled or SingularityCE was
installed without root.

	When a container is run with the --userns option.

	When --fakeroot is used to impersonate a root user when building
or running a container.

	When the –oci runtime mode is used.

User Namespace Requirements

To allow unprivileged creation of user namespaces a kernel >=3.8 is
required, with >=3.18 being recommended due to security fixes for user
namespaces.

To use a persistent overlay directory with --overlay when running
unprivileged, a kernel >=5.11 is required.

Additionally, some Linux distributions require that unprivileged user
namespace creation is enabled using a sysctl or kernel command line
parameter. Please consult your distribution documentation or vendor to
confirm the steps necessary to ‘enable unprivileged user namespace
creation’.

Debian

sudo sh -c 'echo kernel.unprivileged_userns_clone=1 \
 >/etc/sysctl.d/90-unprivileged_userns.conf'
sudo sysctl -p /etc/sysctl.d /etc/sysctl.d/90-unprivileged_userns.conf

RHEL/CentOS 7

From 7.4, kernel support is included but must be enabled with:

sudo sh -c 'echo user.max_user_namespaces=15000 \
 >/etc/sysctl.d/90-max_net_namespaces.conf'
sudo sysctl -p /etc/sysctl.d /etc/sysctl.d/90-max_net_namespaces.conf

Unprivileged Installations

As detailed in the non-setuid installation
section, SingularityCE can be compiled or configured with the allow
setuid = no option in singularity.conf to not perform privileged
operations using the starter-setuid binary.

When SingularityCE does not use setuid all container execution will
use a user namespace. In this mode of operation, some features are not
available, and there are impacts to the security/integrity guarantees
when running SIF container images:

	Unless using the experimental --sif-fuse function, all containers must be
run from sandbox directories. SIF images are extracted to a sandbox directory
on the fly, preventing verification at runtime, and potentially allowing
external modification of the container at runtime.

	Filesystem image, and SIF-embedded persistent overlays cannot be
used. Directory overlays require kernel >=5.11.

	Encrypted containers cannot be used. SingularityCE mounts encrypted
containers directly through the kernel, so that encrypted content is
not extracted to disk. This requires the setuid workflow.

	Fakeroot functionality will rely on external setuid root
newuidmap and newgidmap binaries which may be provided by the
distribution.

–userns option

The --userns option to singularity run/exec/shell will start a
container using a user namespace, avoiding the setuid privileged
workflow for container setup even if SingularityCE was compiled and
configured to use setuid by default.

The same limitations apply as in an unprivileged installation.

–sif-fuse option

If squashfuse >=0.1.100 is installed on the system, and available on the
$PATH, SingularityCE can use it to mount a container filesystem from a SIF
file in unprivileged / user namespace flows.

This is an experimental feature, and does not currently apply to --fakeroot,
or support additional overlays etc.

To always attempt a squashfuse based mount, set sif fuse = yes in
singularity.conf. Otherwise, use the --sif-fuse flag. E.g.:

$ singularity run -u --sif-fuse ~/ubuntu_latest.sif
INFO: Mounting SIF with FUSE...
Singularity>
exit
INFO: Unmounting SIF with FUSE...
INFO: Removing image tempDir /tmp/rootfs-33363059

SingularityCE will call squashfuse before container startup, to mount the
container filesystem read-only, from the SIF to a temporary location. When the
container exits, fusermount is used to unmount the SIF filesystem, and the
temporary location is cleaned up.

If a squashfuse mount cannot be performed successfully, SingularityCE will
fall back to extracting the SIF image to a temporary directory, with a warning
as this extraction is performed.

Fakeroot feature

Fakeroot (or commonly referred as rootless mode) allows an unprivileged
user to run a container as a “fake root” user by leveraging user
namespaces with user namespace UID/GID mapping [http://man7.org/linux/man-pages/man7/user_namespaces.7.html].

User namespace UID/GID mapping allows a user to act as a different
UID/GID in the container than they are on the host. A user can access a
configured range of UIDs/GIDs in the container, which map back to
(generally) unprivileged user UIDs/GIDs on the host. This allows a user
to be root (uid 0) in a container, install packages etc., but have
no privilege on the host.

Requirements

In addition to user namespace support, SingularityCE must manipulate
subuid and subgid maps for the user namespace it creates. By
default this happens transparently in the setuid workflow. With
unprivileged installations of SingularityCE or where allow setuid =
no is set in singularity.conf, SingularityCE attempts to use
external setuid binaries newuidmap and newgidmap, so you need to
install those binaries on your system.

Basics

Fakeroot relies on /etc/subuid and /etc/subgid files to find
configured mappings from real user and group IDs, to a range of
otherwise vacant IDs for each user on the host system that can be
remapped in the user namespace. A user must have an entry in these system
configuration files to use the fakeroot feature. SingularityCE provides
a config fakeroot command to assist in managing
these files, but it is important to understand how they work.

For user foo an entry in /etc/subuid might be:

foo:100000:65536

where foo is the username, 100000 is the start of the UID range
that can be used by foo in a user namespace uid mapping, and
65536 number of UIDs available for mapping.

Same for /etc/subgid:

foo:100000:65536

Note

Some distributions add users to these files on installation, or when
useradd, adduser, etc. utilities are used to manage local
users.

The glibc nss name service switch mechanism does not currently
support managing subuid and subgid mappings with external
directory services such as LDAP. You must manage or provision mapping
files direct to systems where fakeroot will be used.

Warning

SingularityCE requires that a range of at least 65536 IDs is used
for each mapping. Larger ranges may be defined without error.

It is also important to ensure that the subuid and subgid ranges
defined in these files don’t overlap with each other, or any real UIDs
and GIDs on the host system.

So if you want to add another user bar, /etc/subuid and
/etc/subgid will look like:

foo:100000:65536
bar:165536:65536

Resulting in the following allocation:

	User

	Host UID

	Sub UID/GID range

	foo

	1000

	100000 to 165535

	bar

	1001

	165536 to 231071

Inside a user namespace / container, foo and bar can now act as
any UID/GID between 0 and 65536, but these UIDs are confined to the
container. For foo UID 0 in the container will map to the host
foo UID 1000 and 1 to 65536 will map to 100000-165535
outside of the container etc. This impacts the ownership of files, which
will have different IDs inside and outside of the container.

Note

If you are managing large numbers of fakeroot mappings you may wish
to specify users by UID rather than username in the /etc/subuid
and /etc/subgid files. The man page for subuid advises:

“When large number of entries (10000-100000 or more) are defined in
/etc/subuid, parsing performance penalty will become noticeable. In
this case it is recommended to use UIDs instead of login names.
Benchmarks have shown speed-ups up to 20x.”

Filesystem considerations

Based on the above range, here we can see what happens when the user
foo create files with --fakeroot feature:

	Create file with container UID

	Created host file owned by UID

	0 (default)

	1000

	1 (daemon)

	100000

	2 (bin)

	100001

Outside of the fakeroot container the user may not be able to remove
directories and files created with a subuid, as they do not match with
the user’s UID on the host. The user can remove these files by using a
container shell running with fakeroot.

Network configuration

With fakeroot, users can request a container network named fakeroot,
other networks are restricted and can only be used by the real host root
user. By default the fakeroot network is configured to use a network
veth pair.

Warning

Do not change the fakeroot network type in
etc/singularity/network/40_fakeroot.conflist without considering
the security implications.

Note

Unprivileged installations of SingularityCE cannot use fakeroot
network as it requires privilege during container creation to set up
the network.

Configuration with config fakeroot

SingularityCE 3.5 and above provides a config fakeroot command that
can be used by a root user to administer local system /etc/subuid
and /etc/subgid files in a simple manner. This allows users to be
granted the ability to use Singularity’s fakeroot functionality without
editing the files manually. The config fakeroot command will
automatically ensure that generated subuid/subgid ranges are an
appropriate size, and do not overlap.

config fakeroot must be run as the root user, or via sudo
singularity config fakeroot as the /etc/subuid and /etc/subgid
files form part of the system configuration, and are security sensitive.
You may --add or --remove user subuid/subgid mappings. You can
also --enable or --disable existing mappings.

Note

If you deploy SingularityCE to a cluster you will need to make
arrangements to synchronize /etc/subuid and /etc/subgid
mapping files to all nodes.

At this time, the glibc name service switch functionality does not
support subuid or subgid mappings, so they cannot be defined in a
central directory such as LDAP.

Adding a fakeroot mapping

Use the -a/--add <user> option to config fakeroot to create new
mapping entries so that <user> can use the fakeroot feature of
Singularity:

$ sudo singularity config fakeroot --add dave

Show generated `/etc/subuid`
$ cat /etc/subuid
1000:4294836224:65536

Show generated `/etc/subgid`
$ cat /etc/subgid
1000:4294836224:65536

The first subuid range will be set to the top of the 32-bit UID
space. Subsequent subuid ranges for additional users will be created
working down from this value. This minimizes the change of overlap
with real UIDs on most systems.

Note

The config fakeroot command generates mappings specified using
the user’s uid, rather than their username. This is the preferred
format for faster lookups when configuring a large number of
mappings, and the command can be used to manipulate these by
username.

Deleting, disabling, enabling mappings

Use the -r/--remove <user> option to config fakeroot to
completely remove mapping entries. The <user> will no longer be able
to use the fakeroot feature of Singularity:

$ sudo singularity config fakeroot --remove dave

Warning

If a fakeroot mapping is removed, the subuid/subgid range may be
assigned to another user via --add. Any remaining files from the
prior user that were created with this mapping will be accessible to
the new user via fakeroot.

The -d/--disable and -e/--enable options will comment and
uncomment entries in the mapping files, to temporarily disable and
subsequently re-enable fakeroot functionality for a user. This can be
useful to disable fakeroot for a user, but ensure the subuid/subgid
range assigned to them is reserved, and not re-assigned to a different
user.

Disable dave
$ sudo singularity config fakeroot --disable dave

Entry is commented
$ cat /etc/subuid
!1000:4294836224:65536

Enable dave
$ sudo singularity config fakeroot --enable dave

Entry is active
$ cat /etc/subuid
1000:4294836224:65536

Unprivileged Builds Without User Namespaces

Where local container builds need to be performed unprivileged, but user
namespaces and / or subuid mapping cannot be enabled, limited support is
provided via the use of proot. This functionality was introduced in
{SingularityCE} 3.11.

proot is an optional dependency of SingularityCE that can be installed from
community distribution repositories, or a static binary available from
proot-me.github.io [https://proot-me.github.io]. The proot executable
should be on the PATH in order for SingularityCE to use it.

When singularity build is run against a definition file by a non-root user,
and without the --fakeroot option, SingularityCE will search the PATH
for proot. If it is found, then the %post section of the build will run
as an emulated root user. Commands run as the user who invoked singularity
build, but proot will intercept system calls, so that the commands appear
to be running as root.

Unprivileged builds with proot have limitations, as the emulation of the
root user is not complete. These builds:

	Do not support arch / debootstrap / yum / zypper bootstraps. Use localimage,
library, oras, or one of the docker/oci sources.

	Do not support %pre and %setup sections.

	Run the %post sections of a build in the container as an emulated root user.

	Run the %test section of a build as the non-root user, like singularity test.

	Are subject to any restrictions imposed in singularity.conf.

	Incur a performance penalty due to proot’s ptrace based interception of
syscalls.

	May fail if the %post script requires privileged operations that proot cannot
emulate.

Security in SingularityCE

Security Policy

If you suspect you have found a vulnerability in SingularityCE we want
to work with you so that it can be investigated, fixed, and disclosed in
a responsible manner. Please follow the steps in our published Security
Policy [https://sylabs.io/security-policy], which begins with
contacting us privately via security@sylabs.io

Sylabs discloses vulnerabilities found in SingularityCE through public
CVE reports, and notifications on our community channels. We encourage
all users to monitor new releases of SingularityCE for security
information. Security patches are applied to the latest open-source
release.

SingularityPRO is a professionally curated and licensed version of
SingularityCE that provides added security, stability, and support
beyond that offered by the open source project. Security and bug-fix
patches are backported to select versions of SingularityPRO, so that
they can be deployed long-term where required. PRO users receive
security fixes as detailed in the Sylabs Security Policy [https://sylabs.io/security-policy].

Background

SingularityCE grew out of the need to implement a container platform
that was suitable for use on shared systems, such as HPC clusters. In
these environments multiple people access a shared resource. User
accounts, groups, and standard file permissions limit their access to
data, devices, and prevent them from disrupting or accessing others’
work.

To provide security in these environments a container needs to run as
the user who starts it on the system. Before the widespread adoption of
the Linux user namespace, only a privileged user could perform the
operations which are needed to run a container. A default Docker
installation uses a root-owned daemon to start containers. Users can
request that the daemon starts a container on their behalf. However,
coordinating a daemon with other schedulers is difficult and, since the
daemon is privileged, users can ask it to carry out actions that they
wouldn’t normally have permission to do.

When a user runs a container with SingularityCE, it is started as a
normal process running under the user’s account. Standard file
permissions and other security controls based on user accounts, groups,
and processes apply. In a default installation SingularityCE uses a
setuid starter binary to perform only the specific tasks needed to setup
the container.

Setuid & User Namespaces

Using a setuid binary to run container setup operations is essential to
support containers on older Linux distributions, such as CentOS 6, that
were previously common in HPC and enterprise. Newer distributions have
support for ‘unprivileged user namespace creation’. This means a normal
user can create a user namespace, in which most setup operations needed
to run a container can be run unprivileged.

Security Implications of Unprivileged User Namespaces

Warning

If you rely on the ECL or other container execution limits, you must
disable unprivileged user namespace creation on your systems.

When unprivileged user namespace creation is allowed on a system, a user can
supply and use their own unprivileged installation of Singularity or another
container runtime. They may also be able to use standard system tools such as
unshare, nsenter, and FUSE mounts to access / execute arbitrary
containers without installing any runtime. Both of these approaches will allow
users to bypass any restrictions that have been set in a system-wide
installation of SingularityCE. These include:

	The allow container and limit container directives in
singularity.conf.

	The Execution Control List, which restricts execution of SIF container images
via signature checks.

Note also that SingularityCE’s –oci mode is an unprivileged runtime that
requires unprivileged user namespace creation. It does not implement the
container restrictions that cannot be effectively enforced when unprivileged
user namespaces are available.

If your primary security concern is that of restricting the containers which
users can execute, you should use singularity in setuid mode, and ensure
unprivileged user namespace creation is disabled on the host.

Configuration and Limitations of User Namespace Mode

SingularityCE supports running containers without setuid, using user
namespaces. It can be compiled with the --without-setuid option, or
allow setuid = no can be set in singularity.conf to enable this.
In this mode all operations run as the user who starts the
singularity program. However, there are some disadvantages:

	SIF and other single file container images cannot be mounted directly, except
via the experimental --sif-fuse feature. The container image must be
extracted to a directory on disk to run. This impact the speed of execution.
Workloads accessing large numbers of small files (such as python application
startup) do not benefit from the reduced metadata load on the filesystem an
image file provides.

	Replacing direct kernel mounts with the experimental --sif-fuse FUSE
mount approach can cause a significant reduction in performance.

	The effectiveness of signing and verifying container images is
reduced as, when extracted to a directory, modification is possible
and verification of the image’s original signature cannot be
performed.

	Encryption is not supported. SingularityCE leverages kernel LUKS2
mounts to run encrypted containers without decrypting their content
to disk.

	Some sites hold the opinion that vulnerabilities in kernel user
namespace code could have greater impact than vulnerabilities
confined to a single piece of setuid software. Therefore they are
reluctant to enable unprivileged user namespace creation.

	Limitations on container execution by location, valid signatures, user/group
cannot be enforced.

Because of the points above, the default mode of operation of
SingularityCE uses a setuid binary. Sylabs aims to reduce the
circumstances that require this as new functionality is developed and
reaches commonly deployed Linux distributions.

Runtime & User Privilege Model

While other runtimes have aimed to safely sandbox containers executing
as the root user, so that they cannot affect the host system,
SingularityCE has adopted an alternative security model:

	Containers should be run as an unprivileged user.

	The user should never be able to elevate their privileges inside the
container to gain control over the host.

	All permission restrictions on the user outside of a container should
apply inside the container.

	Favor integration over isolation. Allow a user to use host resources
such as GPUs, network file systems, high speed interconnects easily.
The process ID space, network etc. are not isolated in separate
namespaces by default.

To accomplish this, SingularityCE uses a number of Linux kernel
features. The container file system is mounted using the nosuid
option, and processes are started with the PR_NO_NEW_PRIVS flag set.
This means that even if you run sudo inside your container, you
won’t be able to change to another user, or gain root privileges by
other means.

If you do require the additional isolation of the network, devices, PIDs
etc. provided by other runtimes, SingularityCE can make use of
additional namespaces and functionality such as seccomp and cgroups.

Singularity Image Format (SIF)

SingularityCE uses SIF as its default container format. A SIF container
is a single file, which makes it easy to manage and distribute. Inside
the SIF file, the container filesystem is held in a SquashFS object. By
default, we mount the container filesystem directly using SquashFS. On a
network filesystem this means that reads from the container are
data-only. Metadata operations happen locally, speeding up workloads
with many small files.

Holding the container image in a single file also enable unique security
features. The container filesystem is immutable, and can be signed. The
signature travels in the SIF image itself so that it is always possible
to verify that the image has not been tampered with or corrupted.

We use private PGP keys to create a container signature, and the public
key in order to verify the container. Verification of signed containers
happens automatically in singularity pull commands against the
Sylabs Cloud Container Library. A Keystore in the Sylabs Cloud makes it
easier to share and obtain public keys for container verification.

A container may be signed once, by a trusted individual who approves its use. It
could also be signed with multiple keys to signify it has passed each step in a
CI/CD QA & Security process. In setuid mode, SingularityCE can be configured with
an execution control list (ECL). The ECL requires the presence of one or more
valid signatures, to limit execution to approved containers on systems that have
unprivileged user namespace creation disabled.

In SingularityCE 3.4 and above, the root filesystem of a container
(stored in the squashFS partition of SIF) can be encrypted. As a result,
everything inside the container becomes inaccessible without the correct
key or passphrase. The content of the container is private, even if the
SIF file is shared in public.

Encryption and decryption are performed using the Linux kernel’s LUKS2
feature. This is the same technology routinely used for full disk
encryption. The encrypted container is mounted directly through the
kernel. Unlike other container formats, an encrypted container is not
decrypted to disk in order to run it.

Plugins

As discussed in the SingularityCE User Guide, plugins [https://sylabs.io/guides/3.11/user-guide/plugins.html] provide a way
to augment Singularity with additional functionality. Before using the
singularity plugin compile or singularity plugin install commands to
compile or add a new plugin to your SingularityCE installation, make sure that
you trust the origin of the plugin, and that you are certain it does not contain
any malicious code.

For further information on verifying the contents of SIF files using
cryptographic signatures, see the “Sign and Verify” section [https://sylabs.io/guides/3.11/user-guide/signNverify.html] of the
SingularityCE User Guide.

Configuration & Runtime Options

System administrators who manage SingularityCE can use configuration files to
set security restrictions, grant or revoke a user’s capabilities, manage
resources and authorize containers etc.

Configuration files and their parameters are documented for
administrators here.

When running a container as root, SingularityCE can apply hardening rules using
seccomp and apparmor. See the ‘Security Options’ section of the user
guide.

Limits on resource usage by containers can be enforced using cgroups. On systems
that use cgroups v1, only the root user can set resource limits. On systems that
use cgroups v2 and systemd, all users can apply resource limits as long as the
system is configured for delegation.

By default, EL9, Ubuntu 22.04, Debian 11, Fedora 31 and newer use cgroups v2 and
are configured for delegation so that unprivileged users will be able to use the
--apply-cgroups and other resource limit flags of SingularityCE without
further configuration.

On EL8 and Ubuntu 20.04 it is possible to setup a compatible configuration by
following the ‘Enabling cgroup v2’ and ‘Enabling CPU, CPUSET, and I/O
delegation’ steps at the rootless containers website [https://rootlesscontaine.rs/getting-started/common/cgroup2/]

See the ‘Limiting Container Resources’ section of the user guide for more
details of how to apply cgroups limits to containers at runtime.

Installed Files

An installation of SingularityCE 3.11.0, performed as
root via sudo make install consists of the following files, with
ownership and permissions required to use the setuid workflow:

Main executables
bin root:root 755 (drwxr-xr-x)
bin/singularity root:root 755 (-rwxr-xr-x)
bin/run-singularity root:root 755 (-rwxr-xr-x)

Configuration files
etc root:root 755 (drwxr-xr-x)
etc/bash_completion.d root:root 755 (drwxr-xr-x)
etc/bash_completion.d/singularity root:root 644 (-rw-r--r--)
etc/singularity root:root 755 (drwxr-xr-x)
etc/singularity/singularity.conf root:root 644 (-rw-r--r--)
etc/singularity/remote.yaml root:root 644 (-rw-r--r--)
etc/singularity/network root:root 755 (drwxr-xr-x)
etc/singularity/network/00_bridge.conflist root:root 644 (-rw-r--r--)
etc/singularity/network/10_ptp.conflist root:root 644 (-rw-r--r--)
etc/singularity/network/20_ipvlan.conflist root:root 644 (-rw-r--r--)
etc/singularity/network/30_macvlan.conflist root:root 644 (-rw-r--r--)
etc/singularity/network/40_fakeroot.conflist root:root 644 (-rw-r--r--)
etc/singularity/capability.json root:root 644 (-rw-r--r--)
etc/singularity/ecl.toml root:root 644 (-rw-r--r--)
etc/singularity/seccomp-profiles root:root 755 (drwxr-xr-x)
etc/singularity/seccomp-profiles/default.json root:root 644 (-rw-r--r--)
etc/singularity/nvliblist.conf root:root 644 (-rw-r--r--)
etc/singularity/rocmliblist.conf root:root 644 (-rw-r--r--)
etc/singularity/cgroups root:root 755 (drwxr-xr-x)
etc/singularity/cgroups/cgroups.toml root:root 644 (-rw-r--r--)
etc/singularity/global-pgp-public root:root 644 (-rw-r--r--)

Runtime executables
libexec root:root 755 (drwxr-xr-x)
libexec/singularity root:root 755 (drwxr-xr-x)
libexec/singularity/bin root:root 755 (drwxr-xr-x)
libexec/singularity/bin/conmon root:root 755 (-rwxr-xr-x)
libexec/singularity/bin/starter root:root 755 (-rwxr-xr-x)
libexec/singularity/bin/starter-suid root:root 4755 (-rwsr-xr-x)

CNI network plugins
libexec/singularity/cni root:root 755 (drwxr-xr-x)
libexec/singularity/cni/dhcp root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/host-local root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/static root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/bridge root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/host-device root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/ipvlan root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/loopback root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/macvlan root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/ptp root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/vlan root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/bandwidth root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/firewall root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/portmap root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/sbr root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/tuning root:root 755 (-rwxr-xr-x)
libexec/singularity/cni/vrf root:root 755 (-rwxr-xr-x)

Documentation (man pages)
share root:root 755 (drwxr-xr-x)
share/man root:root 755 (drwxr-xr-x)
share/man/man1 root:root 755 (drwxr-xr-x)
share/man/man1/singularity.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-build.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-cache.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-cache-clean.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-cache-list.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-capability.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-capability-add.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-capability-avail.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-capability-drop.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-capability-list.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-config.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-config-fakeroot.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-config-global.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-delete.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-exec.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-inspect.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-instance.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-instance-list.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-instance-start.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-instance-stop.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key-export.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key-import.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key-list.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key-newpair.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key-pull.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key-push.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key-remove.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-key-search.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-attach.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-create.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-delete.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-exec.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-kill.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-mount.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-pause.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-resume.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-run.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-start.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-state.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-umount.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-oci-update.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-overlay.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-overlay-create.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin-compile.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin-create.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin-disable.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin-enable.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin-inspect.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin-install.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin-list.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-plugin-uninstall.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-pull.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-push.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-add.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-add-keyserver.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-list.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-login.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-logout.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-remove.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-remove-keyserver.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-status.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-remote-use.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-run.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-run-help.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-search.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-shell.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif-add.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif-del.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif-dump.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif-header.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif-info.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif-list.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif-new.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sif-setprim.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-sign.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-test.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-verify.1 root:root 644 (-rw-r--r--)
share/man/man1/singularity-version.1 root:root 644 (-rw-r--r--)

Container state directories
var root:root 755 (drwxr-xr-x)
var/singularity root:root 755 (drwxr-xr-x)
var/singularity/mnt root:root 755 (drwxr-xr-x)
var/singularity/mnt/session root:root 755 (drwxr-xr-x)

License

This documentation is subject to the following 3-clause BSD license:

Copyright (c) 2017, SingularityWare, LLC. All rights reserved.
Copyright (c) 2018-2023, Sylabs, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

 nav.xhtml

 Table of Contents

 		
 Admin Guide

 		
 Admin Quickstart

 		
 Architecture of SingularityCE

 		
 SingularityCE Security

 		
 OCI Compatibility

 		
 Installation from Source

 		
 Install Dependencies

 		
 Install Go

 		
 Download SingularityCE from a GitHub release

 		
 Compile & Install SingularityCE

 		
 Installation from RPM/Deb Packages

 		
 Configuration

 		
 Test SingularityCE

 		
 Installing SingularityCE

 		
 Installation on Linux

 		
 System Requirements

 		
 Install from Provided RPM / Deb Packages

 		
 Install from Source

 		
 Build and install an RPM

 		
 Remove an old version

 		
 Testing & Checking the Build Configuration

 		
 Installation on Windows or Mac

 		
 Windows

 		
 Mac

 		
 SingularityCE Vagrant Box

 		
 SingularityCE Docker Image

 		
 Configuration files

 		
 singularity.conf

 		
 Setuid and Capabilities

 		
 Loop Devices

 		
 Namespace Options

 		
 Configuration Files

 		
 Session Directory and System Mounts

 		
 Bind Mount Management

 		
 Limiting Container Execution

 		
 Disabling Kernel Filesystem Mounts

 		
 Networking Options

 		
 GPU Options

 		
 Supplemental Filesystems

 		
 CNI Configuration and Plugins

 		
 External Binaries

 		
 Concurrent Downloads

 		
 Cgroups Options

 		
 Experimental Options

 		
 Updating Configuration Options

 		
 cgroups.toml

 		
 Examples

 		
 ecl.toml

 		
 Managing ECL public keys

 		
 GPU Library Configuration

 		
 NVIDIA GPUs / CUDA

 		
 AMD Radeon GPUs / ROCm

 		
 GPU liblist format

 		
 capability.json

 		
 seccomp-profiles

 		
 remote.yaml

 		
 Remote Endpoints

 		
 Keyserver Configuration

 		
 User Namespaces & Fakeroot

 		
 User Namespace Requirements

 		
 Debian

 		
 RHEL/CentOS 7

 		
 Unprivileged Installations

 		
 –userns option

 		
 –sif-fuse option

 		
 Fakeroot feature

 		
 Requirements

 		
 Basics

 		
 Filesystem considerations

 		
 Network configuration

 		
 Configuration with config fakeroot

 		
 Unprivileged Builds Without User Namespaces

 		
 Security in SingularityCE

 		
 Security Policy

 		
 Background

 		
 Setuid & User Namespaces

 		
 Security Implications of Unprivileged User Namespaces

 		
 Configuration and Limitations of User Namespace Mode

 		
 Runtime & User Privilege Model

 		
 Singularity Image Format (SIF)

 		
 Plugins

 		
 Configuration & Runtime Options

 		
 Appendix

 		
 License

_static/favicon.png

_static/file.png

_static/favicon-192.png
(g)

_static/plus.png

_static/logo.png

_static/minus.png

