

SingularityCE User Guide

Welcome to the SingularityCE User Guide!

This guide aims to give an introduction to SingularityCE, brief
installation instructions, and cover topics relevant to users building
and running containers.

For a detailed guide to installation and configuration, please see the
separate Admin Guide for this version of SingularityCE at
https://sylabs.io/guides/3.10/admin-guide/.

Getting Started & Background Information

	Introduction to SingularityCE
	Why use SingularityCE?

	Why use containers?

	Use Cases

	Quick Start
	Quick Installation Steps

	Overview of the SingularityCE Interface

	Download pre-built images

	Interact with images

	Working with Files

	Build images from scratch

	Security in SingularityCE
	Security Policy

	Background

	Setuid & User Namespaces

	Runtime & User Privilege Model

	Singularity Image Format (SIF)

	Configuration & Runtime Options

Building Containers

Learn how to write a definition file that can be used to build a
container. Understand the environment within a build, how to perform
remote builds, and how to use the --fakeroot feature to build as a
non-root user.

	Build a container

	The Definition File

	Build Environment

	Fakeroot feature

Container Signing & Encryption

SingularityCE allows containers to be signed using a PGP key. The
signature travels with the container image, allowing you to verify that
the image is unmodified at any time. Encryption of containers using
LUKS2 is also supported. Encrypted containers can be run without
decrypting them to disk first.

	Sign and Verify

	Key management commands

	Encrypted Containers

Sharing & Online Services

Sylabs offers a suite of container services, with a free tier and
on-premise options. Learn how to make use these services to simplify the
process of building, signing, and sharing your containers.

	Remote Endpoints

	Sylabs Cloud Library

Advanced Usage

Once you’ve understood the basics, explore all the options which
SingularityCE provides for accessing data, running persistent services
in containers, manipulating the container environment, and applying
networking and security configuration.

	Bind Paths and Mounts

	Persistent Overlays

	Running Services

	Environment and Metadata

	Plugins

	Security Options

	Network Options

	Limiting Container Resources

Compatibility

SingularityCE has unique benefits and supports easy access to GPUs and
other hardware. It also strives for compatibility with Docker/OCI
container formats. Understand the differences between SingularityCE and
Docker, as well as how to use containerized MPI and GPU applications.

	Support for Docker / OCI Containers

	OCI Runtime Support

	Singularity and MPI applications

	GPU Support

Get Involved

We’d love you to get involved in the SingularityCE community! Whether
through contributing feature and fixes, helping to answer questions from
other users, or simply testing new releases.

	Contributing

Reference

	Appendix
	SingularityCE’s environment variables

	Build Modules

	Command Line Reference

	Licenses

Introduction to SingularityCE

SingularityCE is a container platform. It allows you to create and run
containers that package up pieces of software in a way that is portable
and reproducible. You can build a container using SingularityCE on your
laptop, and then run it on many of the largest HPC clusters in the
world, local university or company clusters, a single server, in the
cloud, or on a workstation down the hall. Your container is a single
file, and you don’t have to worry about how to install all the software
you need on each different operating system.

Why use SingularityCE?

SingularityCE was created to run complex applications on HPC clusters in
a simple, portable, and reproducible way. First developed at Lawrence
Berkeley National Laboratory, it quickly became popular at other HPC
sites, academic sites, and beyond. SingularityCE is an open-source
project, with a friendly community of developers and users. The user
base continues to expand, with SingularityCE now used across industry
and academia in many areas of work.

Many container platforms are available, but SingularityCE is focused on:

	Verifiable reproducibility and security, using cryptographic
signatures, an immutable container image format, and in-memory
decryption.

	Integration over isolation by default. Easily make use of GPUs,
high speed networks, parallel filesystems on a cluster or server
by default.

	Mobility of compute. The single file SIF container format is easy
to transport and share.

	A simple, effective security model. You are the same user inside a
container as outside, and cannot gain additional privilege on the
host system by default. Read more about Security in SingularityCE.

Why use containers?

A Unix operating system is broken into two primary components, the
kernel space, and the user space. The Kernel talks to the hardware, and
provides core system features. The user space is the environment that
most people are most familiar with. It is where applications, libraries
and system services run.

Traditionally you use an operating system that has a fixed combination
of kernel and user space. If you have access to a machine running CentOS
then you cannot install software that was packaged for Ubuntu on it,
because the user space of these distributions is not compatible. It can
also be very difficult to install multiple versions of the same
software, which might be needed to support reproducibility in different
workflows over time.

Containers change the user space into a swappable component. This means
that the entire user space portion of a Linux operating system,
including programs, custom configurations, and environment can be
independent of whether your system is running CentOS, Fedora etc.,
underneath. A SingularityCE container packages up whatever you need into
a single, verifiable file.

Software developers can now build their stack onto whatever operating
system base fits their needs best, and create distributable runtime
environments so that users never have to worry about dependencies and
requirements, that they might not be able to satisfy on their systems.

Use Cases

BYOE: Bring Your Own Environment!

Engineering work-flows for research computing can be a complicated and
iterative process, and even more so on a shared and somewhat inflexible
production environment. SingularityCE solves this problem by making the
environment flexible.

Additionally, it is common (especially in education) for schools to
provide a standardized pre-configured Linux distribution to the students
which includes all of the necessary tools, programs, and configurations
so they can immediately follow along.

Reproducible science

SingularityCE containers can be built to include all of the programs,
libraries, data and scripts such that an entire demonstration can be
contained and either archived or distributed for others to replicate no
matter what version of Linux they are presently running.

Commercially supported code requiring a particular environment

Some commercial applications are only certified to run on particular
versions of Linux. If that application was installed into a
SingularityCE container running the version of Linux that it is
certified for, that container could run on any Linux host. The
application environment, libraries, and certified stack would all
continue to run exactly as it is intended.

Additionally, SingularityCE blurs the line between container and host
such that your home directory (and other directories) exist within the
container. Applications within the container have full and direct access
to all files you own thus you can easily incorporate the contained
commercial application into your work and process flow on the host.

Static environments (software appliances)

Fund once, update never software development model. While this is not
ideal, it is a common scenario for research funding. A certain amount of
money is granted for initial development, and once that has been done
the interns, grad students, post-docs, or developers are reassigned to
other projects. This leaves the software stack un-maintained, and even
rebuilds for updated compilers or Linux distributions can not be done
without unfunded effort.

Legacy code on old operating systems

Similar to the above example, while this is less than ideal it is a fact
of the research ecosystem. As an example, I know of one Linux
distribution which has been end of life for 15 years which is still in
production due to the software stack which is custom built for this
environment. SingularityCE has no problem running that operating system
and application stack on a current operating system and hardware.

Complicated software stacks that are very host specific

There are various software packages which are so complicated that it
takes much effort in order to port, update and qualify to new operating
systems or compilers. The atmospheric and weather applications are a
good example of this. Porting them to a contained operating system will
prolong the use-fullness of the development effort considerably.

Complicated work-flows that require custom installation and/or data

Consolidating a work-flow into a SingularityCE container simplifies
distribution and replication of scientific results. Making containers
available along with published work enables other scientists to build
upon (and verify) previous scientific work.

Quick Start

This guide is intended for running SingularityCE on a computer where you
have root (administrative) privileges, and will install SingularityCE
from source code. Other installation options, including building an RPM
package and installing SingularityCE without root privileges are
discussed in the installation section of the admin guide [https://sylabs.io/guides/3.10/admin-guide/installation.html].

If you need to request an installation on your shared resource, see the
requesting an installation section for
information to send to your system administrator.

For any additional help or support contact the Sylabs team:
https://www.sylabs.io/contact/

Quick Installation Steps

You will need a Linux system to run SingularityCE natively. Options for
using SingularityCE on Mac and Windows machines, along with alternate
Linux installation options are discussed in the installation section of
the admin guide [https://sylabs.io/guides/3.10/admin-guide/installation.html].

Install system dependencies

You must first install development tools and libraries to your host.

On Debian-based systems, including Ubuntu:

Ensure repositories are up-to-date
sudo apt-get update
Install debian packages for dependencies
sudo apt-get install -y \
 build-essential \
 libseccomp-dev \
 pkg-config \
 squashfs-tools \
 cryptsetup

On CentOS/RHEL:

Install basic tools for compiling
sudo yum groupinstall -y 'Development Tools'
Install RPM packages for dependencies
sudo yum install -y \
 libseccomp-devel \
 squashfs-tools \
 cryptsetup

There are 3 broad steps to installing SingularityCE:

	Installing Go

	Downloading SingularityCE

	Compiling SingularityCE Source Code

Install Go

SingularityCE is written in Go, and may require a newer version of Go than is
available in the repositories of your distribution. We recommend installing the
latest version of Go from the [official binaries](https://golang.org/dl/).

SingularityCE aims to maintain support for the two most recent stable versions
of Go. This corresponds to the Go Release Maintenance Policy and Security
Policy, ensuring critical bug fixes and security patches are available for all
supported language versions.

Note

If you have previously installed Go from a download, rather than an
operating system package, you should remove your go directory,
e.g. rm -r /usr/local/go before installing a newer version.
Extracting a new version of Go over an existing installation can lead
to errors when building Go programs, as it may leave old files, which
have been removed or replaced in newer versions.

Visit the Go Downloads page [https://golang.org/dl/] and pick a
package archive suitable to the environment you are in. Once the
Download is complete, extract the archive to /usr/local (or use
other instructions on go installation page). Alternatively, follow the
commands here:

$ export VERSION=1.17.2 OS=linux ARCH=amd64 && \ # Replace the values as needed
 wget https://dl.google.com/go/go$VERSION.$OS-$ARCH.tar.gz && \ # Downloads the required Go package
 sudo tar -C /usr/local -xzvf go$VERSION.$OS-$ARCH.tar.gz && \ # Extracts the archive
 rm go$VERSION.$OS-$ARCH.tar.gz # Deletes the ``tar`` file

Set the Environment variable PATH to point to Go:

$ echo 'export PATH=/usr/local/go/bin:$PATH' >> ~/.bashrc && \
 source ~/.bashrc

Download SingularityCE from a release

You can download SingularityCE from one of the releases. To see a full
list, visit the GitHub release page [https://github.com/sylabs/singularity/releases]. After deciding on a
release to install, you can run the following commands to proceed with
the installation.

$ export VERSION=3.10.0 && # adjust this as necessary \
 wget https://github.com/sylabs/singularity/releases/download/v${VERSION}/singularity-ce-${VERSION}.tar.gz && \
 tar -xzf singularity-ce-${VERSION}.tar.gz && \
 cd singularity-ce-${VERSION}

Compile the SingularityCE source code

Now you are ready to build SingularityCE. Dependencies will be
automatically downloaded. You can build SingularityCE using the
following commands:

$./mconfig && \
 make -C builddir && \
 sudo make -C builddir install

SingularityCE must be installed as root to function properly.

Overview of the SingularityCE Interface

SingularityCE’s command line interface allows you to build
and interact with containers transparently. You can run programs inside
a container as if they were running on your host system. You can easily
redirect IO, use pipes, pass arguments, and access files, sockets, and
ports on the host system from within a container.

The help command gives an overview of SingularityCE options and
subcommands as follows:

$ singularity help

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Usage:
 singularity [global options...]

Description:
 SingularityCE containers provide an application virtualization layer enabling
 mobility of compute via both application and environment portability. With
 SingularityCE one is capable of building a root file system that runs on any
 other Linux system where SingularityCE is installed.

Options:
 -d, --debug print debugging information (highest verbosity)
 -h, --help help for singularity
 --nocolor print without color output (default False)
 -q, --quiet suppress normal output
 -s, --silent only print errors
 -v, --verbose print additional information

Available Commands:
 build Build a SingularityCE image
 cache Manage the local cache
 capability Manage Linux capabilities for users and groups
 exec Run a command within a container
 help Help about any command
 inspect Show metadata for an image
 instance Manage containers running as services
 key Manage OpenPGP keys
 oci Manage OCI containers
 plugin Manage singularity plugins
 pull Pull an image from a URI
 push Upload image to the provided library (default is "cloud.sylabs.io")
 remote Manage singularity remote endpoints
 run Run the user-defined default command within a container
 run-help Show the user-defined help for an image
 search Search a Container Library for images
 shell Run a shell within a container
 sif siftool is a program for Singularity Image Format (SIF) file manipulation
 sign Attach a cryptographic signature to an image
 test Run the user-defined tests within a container
 verify Verify cryptographic signatures attached to an image
 version Show the version for SingularityCE

Examples:
 $ singularity help <command> [<subcommand>]
 $ singularity help build
 $ singularity help instance start

For additional help or support, please visit https://www.sylabs.io/docs/

Information about subcommand can also be viewed with the help
command.

$ singularity help verify
Verify cryptographic signatures attached to an image

Usage:
 singularity verify [verify options...] <image path>

Description:
 The verify command allows a user to verify cryptographic signatures on SIF
 container files. There may be multiple signatures for data objects and
 multiple data objects signed. By default the command searches for the primary
 partition signature. If found, a list of all verification blocks applied on
 the primary partition is gathered so that data integrity (hashing) and
 signature verification is done for all those blocks.

Options:
 -a, --all verify all objects
 -g, --group-id uint32 verify objects with the specified group ID
 -h, --help help for verify
 -j, --json output json
 --legacy-insecure enable verification of (insecure) legacy signatures
 -l, --local only verify with local keys
 -i, --sif-id uint32 verify object with the specified ID
 -u, --url string key server URL (default "https://keys.sylabs.io")

Examples:
 $ singularity verify container.sif

For additional help or support, please visit https://www.sylabs.io/docs/

SingularityCE uses positional syntax (i.e. the order of commands and
options matters). Global options affecting the behavior of all commands
follow the main singularity command. Then sub commands are followed
by their options and arguments.

For example, to pass the --debug option to the main singularity
command and run SingularityCE with debugging messages on:

$ singularity --debug run library://lolcow

To pass the --containall option to the run command and run a
SingularityCE image in an isolated manner:

$ singularity run --containall library://lolcow

SingularityCE 2.4 introduced the concept of command groups. For
instance, to list Linux capabilities for a particular user, you would
use the list command in the capability command group like so:

$ singularity capability list dave

Container authors might also write help docs specific to a container or
for an internal module called an app. If those help docs exist for a
particular container, you can view them like so.

$ singularity inspect --helpfile container.sif # See the container's help, if provided

$ singularity inspect --helpfile --app=foo foo.sif # See the help for foo, if provided

Download pre-built images

You can use the search command to locate groups, collections, and
containers of interest on the Container Library [https://cloud.sylabs.io/library] .

singularity search tensorflow
Found 22 container images for amd64 matching "tensorflow":

 library://ajgreen/default/tensorflow2-gpu-py3-r-jupyter:latest
 Current software: tensorflow2; py3.7; r; jupyterlab1.2.6
 Signed by: 1B8565093D80FA393BC2BD73EA4711C01D881FCB

 library://bensonyang/collection/tensorflow-rdma_v4.sif:latest

 library://dxtr/default/hpc-tensorflow:0.1

 library://emmeff/tensorflow/tensorflow:latest

 library://husi253/default/tensorflow:20.01-tf1-py3-mrcnn-2020.10.07

 library://husi253/default/tensorflow:20.01-tf1-py3-mrcnn-20201014

 library://husi253/default/tensorflow:20.01-tf2-py3-lhx-20201007

 library://irinaespejo/default/tensorflow-gan:sha256.0c1b6026ba2d6989242f418835d76cd02fc4cfc8115682986395a71ef015af18

 library://jon/default/tensorflow:1.12-gpu
 Signed by: D0E30822F7F4B229B1454388597B8AFA69C8EE9F

 ...

You can use the pull [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_pull.html]
and build [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_build.html]
commands to download pre-built images from an external resource like the
Container Library [https://cloud.sylabs.io/library] or Docker Hub [https://hub.docker.com/].

When called on a native SingularityCE image like those provided on the
Container Library, pull simply downloads the image file to your
system.

$ singularity pull library://lolcow

You can also use pull with the docker:// uri to reference Docker
images served from a registry. In this case pull does not just
download an image file. Docker images are stored in layers, so pull
must also combine those layers into a usable SingularityCE file.

$ singularity pull docker://sylabsio/lolcow

Pulling Docker images reduces reproducibility. If you were to pull a
Docker image today and then wait six months and pull again, you are not
guaranteed to get the same image. If any of the source layers has
changed the image will be altered. If reproducibility is a priority for
you, try building your images from the Container Library.

You can also use the build command to download pre-built images from
an external resource. When using build you must specify a name for
your container like so:

$ singularity build ubuntu.sif library://ubuntu

$ singularity build lolcow.sif docker://sylabsio/lolcow

Unlike pull, build will convert your image to the latest
SingularityCE image format after downloading it. build is like a
“Swiss Army knife” for container creation. In addition to downloading
images, you can use build to create images from other images or from
scratch using a definition file. You can also
use build to convert an image between the container formats
supported by SingularityCE. To see a comparison of SingularityCE
definition file with Dockerfile, please see: this section.

Interact with images

You can interact with images in several ways, each of which can accept
image URIs in addition to a local image path.

For demonstration, we will use a lolcow_latest.sif image that can be
pulled from the Container Library:

$ singularity pull library://lolcow

Shell

The shell [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_shell.html]
command allows you to spawn a new shell within your container and
interact with it as though it were a small virtual machine.

$ singularity shell lolcow_latest.sif

SingularityCE lolcow_latest.sif:~>

The change in prompt indicates that you have entered the container
(though you should not rely on that to determine whether you are in
container or not).

Once inside of a SingularityCE container, you are the same user as you
are on the host system.

SingularityCE lolcow_latest.sif:~> whoami
david

SingularityCE lolcow_latest.sif:~> id
uid=1000(david) gid=1000(david) groups=1000(david),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),126(sambashare)

shell also works with the library://, docker://, and
shub:// URIs. This creates an ephemeral container that disappears
when the shell is exited.

$ singularity shell library://lolcow

Executing Commands

The exec [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_exec.html]
command allows you to execute a custom command within a container by
specifying the image file. For instance, to execute the cowsay
program within the lolcow_latest.sif container:

$ singularity exec lolcow_latest.sif cowsay moo

< moo >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

exec also works with the library://, docker://, and
shub:// URIs. This creates an ephemeral container that executes a
command and disappears.

$ singularity exec library://lolcow cowsay "Fresh from the library!"

< Fresh from the library! >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Running a container

SingularityCE containers contain runscripts. These
are user defined scripts that define the actions a container should
perform when someone runs it. The runscript can be triggered with the
run [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_run.html]
command, or simply by calling the container as though it were an
executable.

$ singularity run lolcow_latest.sif

< Mon Aug 16 13:01:55 CDT 2021 >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

$./lolcow_latest.sif

< Mon Aug 16 13:12:50 CDT 2021 >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

run also works with the library://, docker://, and
shub:// URIs. This creates an ephemeral container that runs and then
disappears.

$ singularity run library://lolcow

< Mon Aug 16 13:12:33 CDT 2021 >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Arguments to run

You can pass arguments to the runscript of a container, if it accepts
them. For example, the default runscript of the library://alpine
container passes any arguments to a shell. We can ask the container
to run echo command in this shell:

$ singularity run library://alpine echo "hello"

hello

Because SingularityCE runscripts are evaluated shell scripts
arguments can behave slightly differently than in Docker/OCI
runtimes, if they contain shell code that may be evaluated. To
replicate Docker/OCI behaviour you may need additional escaping or
quoting of arguments.

$ docker run -it --rm alpine echo "\$HOSTNAME"
$HOSTNAME

$ singularity run docker://alpine echo "\$HOSTNAME"
p700

$ singularity run docker://alpine echo "\\\$HOSTNAME"
$HOSTNAME

The exec command replicates the Docker/OCI behavior as it calls
the specified executable directly.

Working with Files

Files on the host are reachable from within the container.

$ echo "Hello from inside the container" > $HOME/hostfile.txt

$ singularity exec lolcow_latest.sif cat $HOME/hostfile.txt

Hello from inside the container

This example works because hostfile.txt exists in the user’s home
directory. By default SingularityCE bind mounts /home/$USER,
/tmp, and $PWD into your container at runtime.

You can specify additional directories to bind mount into your container
with the --bind option. In this example, the data directory on
the host system is bind mounted to the /mnt directory inside the
container.

$ echo "Drink milk (and never eat hamburgers)." > /data/cow_advice.txt

$ singularity exec --bind /data:/mnt lolcow_latest.sif cat /mnt/cow_advice.txt
Drink milk (and never eat hamburgers).

Pipes and redirects also work with SingularityCE commands just like they
do with normal Linux commands.

$ cat /data/cow_advice.txt | singularity exec lolcow_latest.sif cowsay
 __
< Drink milk (and never eat hamburgers). >
 --
 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Build images from scratch

SingularityCE v3.0 and above produces immutable images in the
Singularity Image File (SIF) format. This ensures reproducible and
verifiable images and allows for many extra benefits such as the ability
to sign and verify your containers.

However, during testing and debugging you may want an image format that
is writable. This way you can shell into the image and install
software and dependencies until you are satisfied that your container
will fulfill your needs. For these scenarios, SingularityCE also
supports the sandbox format (which is really just a directory).

Sandbox Directories

To build into a sandbox (container in a directory) use the build
--sandbox command and option:

$ sudo singularity build --sandbox ubuntu/ library://ubuntu

This command creates a directory called ubuntu/ with an entire
Ubuntu Operating System and some SingularityCE metadata in your current
working directory.

You can use commands like shell, exec , and run with this
directory just as you would with a SingularityCE image. If you pass the
--writable option when you use your container you can also write
files within the sandbox directory (provided you have the permissions to
do so).

$ sudo singularity exec --writable ubuntu touch /foo

$ singularity exec ubuntu/ ls /foo
/foo

Converting images from one format to another

The build command allows you to build a container from an existing
container. This means that you can use it to convert a container from
one format to another. For instance, if you have already created a
sandbox (directory) and want to convert it to the default immutable
image format (squashfs) you can do so:

$ singularity build new-sif sandbox

Doing so may break reproducibility if you have altered your sandbox
outside of the context of a definition file, so you are advised to
exercise care.

SingularityCE Definition Files

For a reproducible, verifiable and production-quality container you
should build a SIF file using a SingularityCE definition file. This also
makes it easy to add files, environment variables, and install custom
software, and still start from your base of choice (e.g., the Container
Library).

A definition file has a header and a body. The header determines the
base container to begin with, and the body is further divided into
sections that perform things like software installation, environment
setup, and copying files into the container from host system, etc.

Here is an example of a definition file:

BootStrap: library
From: ubuntu:16.04

%post
 apt-get -y update
 apt-get -y install date cowsay lolcat

%environment
 export LC_ALL=C
 export PATH=/usr/games:$PATH

%runscript
 date | cowsay | lolcat

%labels
 Author Sylabs

To build a container from this definition file (assuming it is a file
named lolcow.def), you would call build like so:

$ sudo singularity build lolcow.sif lolcow.def

In this example, the header tells SingularityCE to use a base Ubuntu
16.04 image from the Container Library.

	The %post section executes within the container at build time
after the base OS has been installed. The %post section is
therefore the place to perform installations of new applications.

	The %environment section defines some environment variables that
will be available to the container at runtime.

	The %runscript section defines actions for the container to take
when it is executed.

	And finally, the %labels section allows for custom metadata to be
added to the container.

This is a very small example of the things that you can do with a
definition file. In addition to building a
container from the Container Library, you can start with base images
from Docker Hub and use images directly from official repositories such
as Ubuntu, Debian, CentOS, Arch, and BusyBox. You can also use an
existing container on your host system as a base.

If you want to build SingularityCE images but you don’t have
administrative (root) access on your build system, you can build images
using the Remote Builder [https://cloud.sylabs.io/builder].

This quickstart document just scratches the surface of all of the things
you can do with SingularityCE!

If you need additional help or support, contact the Sylabs team:
https://www.sylabs.io/contact/

SingularityCE on a shared resource

Perhaps you are a user who wants a few talking points and background to
share with your administrator. Or maybe you are an administrator who
needs to decide whether to install SingularityCE.

This document, and the accompanying administrator documentation provides
answers to many common questions.

If you need to request an installation you may decide to draft a message
similar to this:

Dear shared resource administrator,

We are interested in having SingularityCE (https://www.sylabs.io/docs/)
installed on our shared resource. SingularityCE containers will allow us to
build encapsulated environments, meaning that our work is reproducible and
we are empowered to choose all dependencies including libraries, operating
system, and custom software. SingularityCE is already in use on many of the
top HPC centers around the world. Examples include:

 Texas Advanced Computing Center
 GSI Helmholtz Center for Heavy Ion Research
 Oak Ridge Leadership Computing Facility
 Purdue University
 National Institutes of Health HPC
 UFIT Research Computing at the University of Florida
 San Diego Supercomputing Center
 Lawrence Berkeley National Laboratory
 University of Chicago
 McGill HPC Centre/Calcul Québec
 Barcelona Supercomputing Center
 Sandia National Lab
 Argonne National Lab

Importantly, it has a vibrant team of developers, scientists, and HPC
administrators that invest heavily in the security and development of the
software, and are quick to respond to the needs of the community. To help
learn more about SingularityCE, I thought these items might be of interest:

 - Security: A discussion of security concerns is discussed at
 https://www.sylabs.io/guides/3.10/admin-guide/admin_quickstart.html

 - Installation:
 https://www.sylabs.io/guides/3.10/admin-guide/installation.html

If you have questions about any of the above, you can contact the open
source list (https://groups.google.com/g/singularity-ce), join the open
source slack channel (singularityce.slack.com), or contact the organization
that supports SingularityCE directly (sylabs.io/contact). I can do my best
to facilitate this interaction if help is needed.

Thank you kindly for considering this request!

Best,

User

Security in SingularityCE

Security Policy

If you suspect you have found a vulnerability in SingularityCE we want
to work with you so that it can be investigated, fixed, and disclosed in
a responsible manner. Please follow the steps in our published Security
Policy [https://sylabs.io/security-policy], which begins with
contacting us privately via security@sylabs.io

Sylabs discloses vulnerabilities found in SingularityCE through public
CVE reports, and notifications on our community channels. We encourage
all users to monitor new releases of SingularityCE for security
information. Security patches are applied to the latest open-source
release.

SingularityPRO is a professionally curated and licensed version of
SingularityCE that provides added security, stability, and support
beyond that offered by the open source project. Security and bug-fix
patches are backported to select versions of SingularityPRO, so that
they can be deployed long-term where required. PRO users receive
security fixes as detailed in the Sylabs Security Policy [https://sylabs.io/security-policy].

Background

SingularityCE grew out of the need to implement a container platform
that was suitable for use on shared systems, such as HPC clusters. In
these environments multiple people access a shared resource. User
accounts, groups, and standard file permissions limit their access to
data, devices, and prevent them from disrupting or accessing others’
work.

To provide security in these environments a container needs to run as
the user who starts it on the system. Before the widespread adoption of
the Linux user namespace, only a privileged user could perform the
operations which are needed to run a container. A default Docker
installation uses a root-owned daemon to start containers. Users can
request that the daemon starts a container on their behalf. However,
coordinating a daemon with other schedulers is difficult and, since the
daemon is privileged, users can ask it to carry out actions that they
wouldn’t normally have permission to do.

When a user runs a container with SingularityCE, it is started as a
normal process running under the user’s account. Standard file
permissions and other security controls based on user accounts, groups,
and processes apply. In a default installation SingularityCE uses a
setuid starter binary to perform only the specific tasks needed to setup
the container.

Setuid & User Namespaces

Using a setuid binary to run container setup operations is essential to
support containers on older Linux distributions, such as CentOS 6, that
were previously common in HPC and enterprise. Newer distributions have
support for ‘unprivileged user namespace creation’. This means a normal
user can create a user namespace, in which most setup operations needed
to run a container can be run, unprivileged.

SingularityCE supports running containers without setuid, using user
namespaces. It can be compiled with the --without-setuid option, or
allow setuid = no can be set in singularity.conf to enable this.
In this mode all operations run as the user who starts the
singularity program. However, there are some disadvantages:

	SIF and other single file container images cannot be mounted
directly. The container image must be extracted to a directory on
disk to run. This impacts the speed of execution. Workloads accessing
large numbers of small files (such as python application startup) do
not benefit from the reduced metadata load on the filesystem an image
file provides.

SingularityCE 3.10 introduces experimental functionality to avoid this
extraction by mounting the SIF container using squashfuse, if it is
available on your system. You can enable this with the --sif-fuse flag,
or sif fuse option in singularity.conf.

	Replacing direct kernel mounts with a FUSE approach is likely to
cause a significant reduction in performance.

	The effectiveness of signing and verifying container images is
reduced as, when extracted to a directory, modification is possible
and verification of the image’s original signature cannot be
performed.

	Encryption is not supported. SingularityCE leverages kernel LUKS2
mounts to run encrypted containers without decrypting their content
to disk.

	Some sites hold the opinion that vulnerabilities in kernel user
namespace code could have greater impact than vulnerabilities
confined to a single piece of setuid software. Therefore they are
reluctant to enable unprivileged user namespace creation.

Because of the points above, the default mode of operation of
SingularityCE uses a setuid binary. Sylabs aims to reduce the
circumstances that require this as new functionality is developed and
reaches commonly deployed Linux distributions.

Runtime & User Privilege Model

While other runtimes have aimed to safely sandbox containers executing
as the root user, so that they cannot affect the host system,
SingularityCE has adopted an alternative security model:

	Containers should be run as an unprivileged user.

	The user should never be able to elevate their privileges inside the
container to gain control over the host.

	All permission restrictions on the user outside of a container should
apply inside the container.

	Favor integration over isolation. Allow a user to use host resources
such as GPUs, network filesystems, high speed interconnects easily.
The process ID space, network etc. are not isolated in separate
namespaces by default.

To accomplish this, SingularityCE uses a number of Linux kernel
features. The container file system is mounted using the nosuid
option, and processes are started with the PR_NO_NEW_PRIVS flag set.
This means that even if you run sudo inside your container, you
won’t be able to change to another user, or gain root privileges by
other means.

If you do require the additional isolation of the network, devices, PIDs
etc. provided by other runtimes, SingularityCE can make use of
additional namespaces and functionality such as seccomp and cgroups.

Singularity Image Format (SIF)

SingularityCE uses SIF as its default container format. A SIF container
is a single file, which makes it easy to manage and distribute. Inside
the SIF file, the container filesystem is held in a SquashFS object. By
default, we mount the container filesystem directly using SquashFS. On a
network filesystem this means that reads from the container are
data-only. Metadata operations happen locally, speeding up workloads
with many small files.

Holding the container image in a single file also enable unique security
features. The container filesystem is immutable, and can be signed. The
signature travels in the SIF image itself so that it is always possible
to verify that the image has not been tampered with or corrupted.

We use private PGP keys to create a container signature, and the public
key in order to verify the container. Verification of signed containers
happens automatically in singularity pull commands against the
Sylabs Cloud Container Library. A Keystore in the Sylabs Cloud makes it
easier to share and obtain public keys for container verification.

A container may be signed once, by a trusted individual who approves its
use. It could also be signed with multiple keys to signify it has passed
each step in a CI/CD QA & Security process. SingularityCE can be
configured with an execution control list (ECL), which requires the
presence of one or more valid signatures, to limit execution to approved
containers.

In SingularityCE 3.4 and above, the root filesystem of a container
(stored in the squashFS partition of SIF) can be encrypted. As a result,
everything inside the container becomes inaccessible without the correct
key or passphrase. The content of the container is private, even if the
SIF file is shared in public.

Encryption and decryption are performed using the Linux kernel’s LUKS2
feature. This is the same technology routinely used for full disk
encryption. The encrypted container is mounted directly through the
kernel. Unlike other container formats, an encrypted container is not
decrypted to disk in order to run it.

Configuration & Runtime Options

System administrators who manage SingularityCE can use configuration
files to set security restrictions, grant or revoke a user’s
capabilities, manage resources and authorize containers etc.

For example, the ecl.toml [https://sylabs.io/guides/3.10/admin-guide/configfiles.html#ecl-toml]
file allows blacklisting and whitelisting of containers.

Configuration files and their parameters are documented for
administrators documented here [https://sylabs.io/guides/3.10/admin-guide/configfiles.html].

When running a container as root, Singularity can apply hardening rules
using cgroups, seccomp, apparmor. See details of these options
here.

Build a Container

build is the “Swiss army knife” of container creation. You can use
it to download and assemble existing containers from external resources
like the Container Library [https://cloud.sylabs.io/library] and
Docker Hub [https://hub.docker.com/]. You can use it to convert
containers between the formats supported by SingularityCE. And you can
use it in conjunction with a SingularityCE definition file to create a container from scratch and
customized it to fit your needs.

Overview

The build command accepts a target as input and produces a container
as output.

The target defines the method that build uses to create the
container. It can be one of the following:

	URI beginning with library:// to build from the Container Library

	URI beginning with docker:// to build from Docker Hub

	URI beginning with shub:// to build from Singularity Hub

	path to a existing container on your local machine

	path to a directory to build from a sandbox

	path to a SingularityCE definition file

build can produce containers in two different formats that can be
specified as follows.

	compressed read-only Singularity Image File (SIF) format suitable
for production (default)

	writable (ch)root directory called a sandbox for interactive
development (--sandbox option)

Because build can accept an existing container as a target and
create a container in either supported format you can convert existing
containers from one format to another.

Downloading an existing container from the Container Library

You can use the build command to download a container from the Container
Library.

$ sudo singularity build lolcow.sif library://lolcow

The first argument (lolcow.sif) specifies a path and name for your
container. The second argument (library://lolcow) gives the
Container Library URI from which to download. By default the container
will be converted to a compressed, read-only SIF. If you want your
container in a writable format use the --sandbox option.

Downloading an existing container from Docker Hub

You can use build to download layers from Docker Hub and assemble
them into SingularityCE containers.

$ sudo singularity build lolcow.sif docker://sylabsio/lolcow

Creating writable --sandbox directories

If you wanted to create a container within a writable directory (called
a sandbox) you can do so with the --sandbox option. It’s possible to
create a sandbox without root privileges, but to ensure proper file
permissions it is recommended to do so as root.

$ sudo singularity build --sandbox lolcow/ library://lolcow

The resulting directory operates just like a container in a SIF file. To
make changes within the container, use the --writable flag when you
invoke your container. It’s a good idea to do this as root to ensure you
have permission to access the files and directories that you want to
change.

$ sudo singularity shell --writable lolcow/

Converting containers from one format to another

If you already have a container saved locally, you can use it as a
target to build a new container. This allows you convert containers from
one format to another. For example if you had a sandbox container called
development/ and you wanted to convert it to SIF container called
production.sif you could:

$ sudo singularity build production.sif development/

Use care when converting a sandbox directory to the default SIF format.
If changes were made to the writable container before conversion, there
is no record of those changes in the SingularityCE definition file
rendering your container non-reproducible. It is a best practice to
build your immutable production containers directly from a SingularityCE
definition file instead.

Building containers from SingularityCE definition files

Of course, SingularityCE definition files can be used as the target when
building a container. For detailed information on writing SingularityCE
definition files, please see the Container Definition docs. Let’s say you already have the following container
definition file called lolcow.def, and you want to use it to build a
SIF container.

Bootstrap: docker
From: ubuntu:16.04

%post
 apt-get -y update
 apt-get -y install cowsay lolcat

%environment
 export LC_ALL=C
 export PATH=/usr/games:$PATH

%runscript
 date | cowsay | lolcat

You can do so with the following command.

$ sudo singularity build lolcow.sif lolcow.def

The command requires sudo just as installing software on your local
machine requires root privileges.

Note

Beware that it is possible to build an image on a host and have the
image not work on a different host. This could be because of the
default compressor supported by the host. For example, when building
an image on a host in which the default compressor is xz and then
trying to run that image on a CentOS 6 node, where the only
compressor available is gzip.

Building encrypted containers

Beginning in SingularityCE 3.4.0 it is possible to build and run
encrypted containers. The containers are decrypted at runtime entirely
in kernel space, meaning that no intermediate decrypted data is ever
present on disk or in memory. See encrypted containers for more details.

Build options

--builder

SingularityCE 3.0 introduces the option to perform a remote build. The
--builder option allows you to specify a URL to a different build
service. For instance, you may need to specify a URL to build to an on
premises installation of the remote builder. This option must be used in
conjunction with --remote.

--detached

When used in combination with the --remote option, the
--detached option will detach the build from your terminal and allow
it to build in the background without echoing any output to your
terminal.

--encrypt

Specifies that SingularityCE should use a secret saved in either the
SINGULARITY_ENCRYPTION_PASSPHRASE or
SINGULARITY_ENCRYPTION_PEM_PATH environment variable to build an
encrypted container. See encrypted containers for
more details.

--fakeroot

Gives users a way to build containers completely unprivileged. See
the fakeroot feature for details.

--force

The --force option will delete and overwrite an existing
SingularityCE image without presenting the normal interactive prompt.

--json

The --json option will force SingularityCE to interpret a given
definition file as a json.

--library

This command allows you to set a different library. (The default library
is “https://library.sylabs.io”)

--notest

If you don’t want to run the %test section during the container
build, you can skip it with the --notest option. For instance, maybe
you are building a container intended to run in a production environment
with GPUs. But perhaps your local build resource does not have GPUs. You
want to include a %test section that runs a short validation but you
don’t want your build to exit with an error because it cannot find a GPU
on your system.

--passphrase

This flag allows you to pass a plaintext passphrase to encrypt the
container file system at build time. See encrypted containers for more details.

--pem-path

This flag allows you to pass the location of a public key to encrypt the
container file system at build time. See encrypted containers for more details.

--remote

SingularityCE 3.0 introduces the ability to build a container on an
external resource running a remote builder. (The default remote builder
is located at “https://cloud.sylabs.io/builder”.)

--sandbox

Build a sandbox (chroot directory) instead of the default SIF format.

--section

Instead of running the entire definition file, only run a specific
section or sections. This option accepts a comma delimited string of
definition file sections. Acceptable arguments include all, none
or any combination of the following: setup, post, files,
environment, test, labels.

Under normal build conditions, the SingularityCE definition file is
saved into a container’s meta-data so that there is a record showing how
the container was built. Using the --section option may render this
meta-data useless, so use care if you value reproducibility.

--update

You can build into the same sandbox container multiple times (though the
results may be unpredictable and it is generally better to delete your
container and start from scratch).

By default if you build into an existing sandbox container, the
build command will prompt you to decide whether or not to overwrite
the container. Instead of this behavior you can use the --update
option to build _into_ an existing container. This will cause
SingularityCE to skip the header and build any sections that are in the
definition file into the existing container.

The --update option is only valid when used with sandbox containers.

--nv

This flag allows you to mount the Nvidia CUDA libraries of your host
into your build environment. Libraries are mounted during the execution
of post and test sections.

--rocm

This flag allows you to mount the AMD Rocm libraries of your host into
your build environment. Libraries are mounted during the execution of
post and test sections.

--bind

This flag allows you to mount a directory, a file or an image during
build, it works the same way as --bind for shell, exec and
run and can be specified multiple times, see user defined bind
paths. Bind mount occurs during the execution
of post and test sections.

--writable-tmpfs

This flag will run the %test section of the build with a writable
tmpfs overlay filesystem in place. This allows the tests to create
files, which will be discarded at the end of the build. Other portions
of the build do not use this temporary filesystem.

More Build topics

	If you want to customize the cache location (where Docker layers
are downloaded on your system), specify Docker credentials, or any
custom tweaks to your build environment, see build environment.

	If you want to make internally modular containers, check out the
getting started guide here [https://sci-f.github.io/tutorials]

	If you want to build your containers on the Remote Builder,
(because you don’t have root access on a Linux machine or want to
host your container on the cloud) check out this site [https://cloud.sylabs.io/builder]

	If you want to build a container with an encrypted file system
look here.

Definition Files

A SingularityCE Definition File (or “def file” for short) is like a set
of blueprints explaining how to build a custom container. It includes
specifics about the base OS to build or the base container to start
from, software to install, environment variables to set at runtime,
files to add from the host system, and container metadata.

Overview

A SingularityCE Definition file is divided into two parts:

	Header: The Header describes the core operating system to build
within the container. Here you will configure the base operating
system features needed within the container. You can specify, the
Linux distribution, the specific version, and the packages that must
be part of the core install (borrowed from the host system).

	Sections: The rest of the definition is comprised of sections,
(sometimes called scriptlets or blobs of data). Each section is
defined by a % character followed by the name of the particular
section. All sections are optional, and a def file may contain more
than one instance of a given section. Sections that are executed at
build time are executed with the /bin/sh interpreter and can
accept /bin/sh options. Similarly, sections that produce scripts
to be executed at runtime can accept options intended for /bin/sh

For more in-depth and practical examples of def files, see the Sylabs
examples repository [https://github.com/sylabs/examples]

For a comparison between Dockerfile and SingularityCE definition file,
please see: this section.

Header

The header should be written at the top of the def file. It tells
SingularityCE about the base operating system that it should use to
build the container. It is composed of several keywords.

The only keyword that is required for every type of build is
Bootstrap. It determines the bootstrap agent that will be used to
create the base operating system you want to use. For example, the
library bootstrap agent will pull a container from the Container
Library [https://cloud.sylabs.io/library] as a base. Similarly, the
docker bootstrap agent will pull docker layers from Docker Hub [https://hub.docker.com/] as a base OS to start your image.

Starting with SingularityCE 3.2, the Bootstrap keyword needs to be
the first entry in the header section. This breaks compatibility with
older versions that allow the parameters of the header to appear in any
order.

Depending on the value assigned to Bootstrap, other keywords may
also be valid in the header. For example, when using the library
bootstrap agent, the From keyword becomes valid. Observe the
following example for building a Debian container from the Container
Library:

Bootstrap: library
From: debian:7

A def file that uses an official mirror to install CentOS 7 might look
like this:

Bootstrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/$basearch/
Include: yum

Each bootstrap agent enables its own options and keywords. You can read
about them and see examples in the appendix section:

Preferred bootstrap agents

	library (images hosted on the
Container Library [https://cloud.sylabs.io/library])

	docker (images hosted on Docker Hub)

	shub (images hosted on Singularity Hub)

	oras (images from supporting OCI registries)

	scratch (a flexible option for building a
container from scratch)

Other bootstrap agents

	localimage (images saved on your machine)

	yum (yum based systems such as CentOS and
Scientific Linux)

	debootstrap (apt based systems such as
Debian and Ubuntu)

	oci (bundle compliant with OCI Image
Specification)

	oci-archive (tar files
obeying the OCI Image Layout Specification)

	docker-daemon (images managed by the
locally running docker daemon)

	docker-archive (archived docker
images)

	arch (Arch Linux)

	busybox (BusyBox)

	zypper (zypper based systems such as Suse and
OpenSuse)

SIF Image Verification / Fingerprints Header

If the bootstrap image is in the SIF format, then verification will be
performed at build time. This verification checks whether the image has
been signed. If it has been signed the integrity of the image is
checked, and the signatures matched to public keys if available. This
process is equivalent to running singularity verify on the bootstrap
image.

By default a failed verification, e.g. against an unsigned image, or one
that has been modified after signing, will produce a warning but the
build will continue.

To enforce that the bootstrap image verifies correctly and has been
signed by one or more keys, you can use the Fingerprints: header
introduced in SingularityCE 3.7.

Bootstrap: localimage
From: test.sif
Fingerprints: 12045C8C0B1004D058DE4BEDA20C27EE7FF7BA84,22045C8C0B1004D058DE4BEDA20C27EE7FF7BA84

If, at build time, the image is not signed with keys corresponding to
all of the listed fingerprints, the build will fail.

The Fingerprints: header can be used with bootstrap agents that
provide a SIF image. The library agent always retrieves a SIF image.
The localimage agent can be used to refer to SIF or other types of
images.

The Fingerprints: header has no effect if the bootstrap image is not
in SIF format.

Note

The verification occurs before the bootstrap image is extracted into
a temporary directory for the build process. The fingerprint check
ensures the correct image was retrieved for the build, but does not
protect against malicious changes that could be made during the build
process on a compromised machine.

Sections

The main content of the bootstrap file is broken into sections.
Different sections add different content or execute commands at
different times during the build process. Note that if any command
fails, the build process will halt.

Here is an example definition file that uses every available section. We
will discuss each section in turn. It is not necessary to include every
section (or any sections at all) within a def file. Furthermore,
multiple sections of the same name can be included and will be appended
to one another during the build process.

Bootstrap: library
From: ubuntu:18.04
Stage: build

%setup
 touch /file1
 touch ${SINGULARITY_ROOTFS}/file2

%files
 /file1
 /file1 /opt

%environment
 export LISTEN_PORT=12345
 export LC_ALL=C

%post
 apt-get update && apt-get install -y netcat
 NOW=`date`
 echo "export NOW=\"${NOW}\"" >> $SINGULARITY_ENVIRONMENT

%runscript
 echo "Container was created $NOW"
 echo "Arguments received: $*"
 exec echo "$@"

%startscript
 nc -lp $LISTEN_PORT

%test
 grep -q NAME=\"Ubuntu\" /etc/os-release
 if [$? -eq 0]; then
 echo "Container base is Ubuntu as expected."
 else
 echo "Container base is not Ubuntu."
 exit 1
 fi

%labels
 Author d@sylabs.io
 Version v0.0.1

%help
 This is a demo container used to illustrate a def file that uses all
 supported sections.

Although the order of the sections in the def file is unimportant, they
have been documented below in the order of their execution during the
build process for logical understanding.

%setup

During the build process, commands in the %setup section are first
executed on the host system outside of the container after the base OS
has been installed. You can reference the container file system with the
$SINGULARITY_ROOTFS environment variable in the %setup section.

Note

Be careful with the %setup section! This scriptlet is executed
outside of the container on the host system itself, and is executed
with elevated privileges when you run the build as root or with
sudo. Commands in %setup can alter and potentially damage the
host.

You should avoid %setup wherever possible, and work inside the
container in the %post block instead.

Consider the example from the definition file above:

%setup
 touch /file1
 touch ${SINGULARITY_ROOTFS}/file2

Here, file1 is created at the root of the file system on the
host. We’ll use file1 to demonstrate the usage of the %files
section below. The file2 is created at the root of the file system
within the container.

In later versions of SingularityCE the %files section is provided as
a safer alternative to copying files from the host system into the
container during the build. Because of the potential danger involved in
running the %setup scriptlet with elevated privileges on the host
system during the build, it’s use is generally discouraged.

%files

The %files section allows you to copy files into the container with
greater safety than using the %setup section. Its general form is:

%files [from <stage>]
 <source> [<destination>]
 ...

Each line is a <source> and <destination> pair. The <source>
is either:

	A valid path to a file or directory on your host system

	A valid glob pattern matching one or more files or directories on
your host system

	A valid path in a previous stage of the build

The <destination> is a path inside the current container. If the
<destination> path is omitted it will be assumed to be the same as
<source>. To show how copying from your host system works, let’s
consider the example from the definition file above:

%files
 /file1
 /file1 /opt

This %files scriptlet will copy /file1 to the root of the
container file system and then make a second copy of file1 within
the container, inside /opt, at /opt/file1.

Copying Multiple Files with Patterns

To copy multiple files or directories at a time you can specify a
pattern as the <source> for a %files line. SingularityCE matches
patterns to filenames using the Go file.Match syntax:

'*' matches any sequence of non-Separator characters
'?' matches any single non-Separator character
'[' ['^'] { character-range } ']'
 character class (must be non-empty)
c matches character c (c != '*', '?', '\\', '[')
'\\' c matches character c

character-range:
c matches character c (c != '\\', '-', ']')
'\\' c matches character c
lo '-' hi matches character c for lo <= c <= hi

(See: https://pkg.go.dev/path/filepath#Match)

Some simple examples:

	myfile* will match all files that have a name beginning with
myfile. E.g. myfile-blue and myfile-red.

	experiment??? will match all files that have a name beginning
with experiment and followed by any three characters. It will
match experiment001,``experiment002``, and experimentABC, but
not experimentA.

	document[0-9] will match document1, but not documentA nor
document01.

Copying Files Between stages

Files can also be copied from other stages, in a multi stage build, by
providing the source location in the previous stage and the destination
in the current container.

%files from stage_name
 /root/hello /bin/hello

The only difference in behavior between copying files from your host
system and copying them from previous stages is that in the former case
symbolic links are always followed during the copy to the container,
while in the latter symbolic links are preserved.

Files in the %files section are always copied before the %post
section is executed so that they are available during the build and
configuration process.

%app*

In some circumstances, it may be redundant to build different containers
for each app with nearly equivalent dependencies. SingularityCE supports
installing apps within internal modules based on the concept of the
Scientific Filesystem (SCIF) [https://sci-f.github.io/]. More
information on defining and using SCIF Apps here.

%post

This section is where you can download files from the internet with
tools like git and wget, install new software and libraries,
write configuration files, create new directories, etc.

Consider the example from the definition file above:

%post
 apt-get update && apt-get install -y netcat
 NOW=`date`
 echo "export NOW=\"${NOW}\"" >> $SINGULARITY_ENVIRONMENT

This %post scriptlet uses the Ubuntu package manager apt to
update the container and install the program netcat (that will be
used in the %startscript section below).

The script is also setting an environment variable at build time. Note
that the value of this variable cannot be anticipated, and therefore
cannot be set during the %environment section. For situations like
this, the $SINGULARITY_ENVIRONMENT variable is provided. Redirecting
text to this variable will cause it to be written to a file called
/.singularity.d/env/91-environment.sh that will be sourced at
runtime.

Variables set in the %post section through
$SINGULARITY_ENVIRONMENT take precedence over those added via
%environment.

%test

The %test section runs at the very end of the build process to
validate the container using a method of your choice. You can also
execute this scriptlet through the container itself, using the test
command.

Consider the example from the def file above:

%test
 grep -q NAME=\"Ubuntu\" /etc/os-release
 if [$? -eq 0]; then
 echo "Container base is Ubuntu as expected."
 else
 echo "Container base is not Ubuntu."
 exit 1
 fi

This (somewhat silly) script tests if the base OS is Ubuntu. You could
also write a script to test that binaries were appropriately downloaded
and built, or that software works as expected on custom hardware. If you
want to build a container without running the %test section (for
example, if the build system does not have the same hardware that will
be used on the production system), you can do so with the --notest
build option:

$ sudo singularity build --notest my_container.sif my_container.def

Running the test command on a container built with this def file yields
the following:

$ singularity test my_container.sif
Container base is Ubuntu as expected.

One common use of the %test section is to run a quick check that the
programs you intend to install in the container are present. If you
installed the program samtools, which shows a usage screen when run
without any options, you might test it can be run with:

%test
 # Run samtools - exits okay with usage screen if installed
 samtools

If samtools is not successfully installed in the container then the
singularity test will exit with an error such as samtools: command
not found.

Some programs return an error code when run without mandatory options.
If you want to ignore this, and just check the program is present and
can be called, you can run it as myprog || true in your test:

%test
 # Run bwa - exits with error code if installed and run without
 # options
 bwa || true

The || true means that if the command before it is found but returns
an error code it will be ignored, and replaced with the error code from
true - which is always 0 indicating success.

Because the %test section is a shell scriptlet, complex tests are
possible. Your scriptlet should usually be written so it will exit with
a non-zero error code if there is a problem during the tests.

Now, the following sections are all inserted into the container
filesystem in single step:

%environment

The %environment section allows you to define environment variables
that will be set at runtime. Note that these variables are not made
available at build time by their inclusion in the %environment
section. This means that if you need the same variables during the build
process, you should also define them in your %post section.
Specifically:

	during build: The %environment section is written to a file
in the container metadata directory. This file is not sourced.

	during runtime: The file in the container metadata directory is
sourced.

You should use the same conventions that you would use in a .bashrc
or .profile file. Consider this example from the def file above:

%environment
 export LISTEN_PORT=12345
 export LC_ALL=C

The $LISTEN_PORT variable will be used in the %startscript
section below. The $LC_ALL variable is useful for many programs
(often written in Perl) that complain when no locale is set.

After building this container, you can verify that the environment
variables are set appropriately at runtime with the following command:

$ singularity exec my_container.sif env | grep -E 'LISTEN_PORT|LC_ALL'
LISTEN_PORT=12345
LC_ALL=C

To set a default value for a variable in the %environment section,
but adopt the value of a host environment variable if it is set, use
the following syntax:

%environment
 FOO=${FOO:-'default'}

The value of FOO in the container will take the value of FOO
on the host, or default if FOO is not set on the host or
--cleanenv / --containall have been specified.

Note that variables added to the $SINGULARITY_ENVIRONMENT file in
%post will take precedence over variables set in the
%environment section.

See Environment and Metadata for more
information about the SingularityCE container environment.

%startscript

Similar to the %runscript section, the contents of the
%startscript section is written to a file within the container at
build time. This file is executed when the instance start command is
issued.

Consider the example from the def file above.

%startscript
 nc -lp $LISTEN_PORT

Here the netcat program is used to listen for TCP traffic on the port
indicated by the $LISTEN_PORT variable (set in the %environment
section above). The script can be invoked like so:

$ singularity instance start my_container.sif instance1
INFO: instance started successfully

$ lsof | grep LISTEN
nc 19061 vagrant 3u IPv4 107409 0t0 TCP *:12345 (LISTEN)

$ singularity instance stop instance1
Stopping instance1 instance of /home/vagrant/my_container.sif (PID=19035)

%runscript

The contents of the %runscript section are written to a file within
the container that is executed when the container image is run (either
via the singularity run command or by executing the container
directly as a command). When the container is invoked, arguments
following the container name are passed to the runscript. This means
that you can (and should) process arguments within your runscript.

Consider the example from the def file above:

%runscript
 echo "Container was created $NOW"
 echo "Arguments received: $*"
 exec echo "$@"

In this runscript, the time that the container was created is echoed via
the $NOW variable (set in the %post section above). The options
passed to the container at runtime are printed as a single string
($*) and then they are passed to echo via a quoted array ($@)
which ensures that all of the arguments are properly parsed by the
executed command. The exec preceding the final echo command
replaces the current entry in the process table (which originally was
the call to SingularityCE). Thus the runscript shell process ceases to
exist, and only the process running within the container remains.

Running the container built using this def file will yield the
following:

$./my_container.sif
Container was created Thu Dec 6 20:01:56 UTC 2018
Arguments received:

$./my_container.sif this that and the other
Container was created Thu Dec 6 20:01:56 UTC 2018
Arguments received: this that and the other
this that and the other

%labels

The %labels section is used to add metadata to the file
/.singularity.d/labels.json within your container. The general
format is a name-value pair.

Consider the example from the def file above:

%labels
 Author d@sylabs.io
 Version v0.0.1
 MyLabel Hello World

Note that labels are defined by key-value pairs. To define a label just
add it on the labels section and after the first space character add the
correspondent value to the label.

In the previous example, the first label name is Author` with a
value of d@sylabs.io. The second label name is Version with a
value of v0.0.1. Finally, the last label named MyLabel has the
value of Hello World.

To inspect the available labels on your image you can do so by running
the following command:

$ singularity inspect my_container.sif

{
 "Author": "d@sylabs.io",
 "Version": "v0.0.1",
 "MyLabel": "Hello World",
 "org.label-schema.build-date": "Thursday_6_December_2018_20:1:56_UTC",
 "org.label-schema.schema-version": "1.0",
 "org.label-schema.usage": "/.singularity.d/runscript.help",
 "org.label-schema.usage.singularity.deffile.bootstrap": "library",
 "org.label-schema.usage.singularity.deffile.from": "ubuntu:18.04",
 "org.label-schema.usage.singularity.runscript.help": "/.singularity.d/runscript.help",
 "org.label-schema.usage.singularity.version": "3.0.1"
}

Some labels that are captured automatically from the build process. You
can read more about labels and metadata here.

%help

Any text in the %help section is transcribed into a metadata file in
the container during the build. This text can then be displayed using
the run-help command.

Consider the example from the def file above:

%help
 This is a demo container used to illustrate a def file that uses all
 supported sections.

After building the help can be displayed like so:

$ singularity run-help my_container.sif
 This is a demo container used to illustrate a def file that uses all
 supported sections.

Multi-Stage Builds

Starting with SingularityCE v3.2 multi-stage builds are supported where
one environment can be used for compilation, then the resulting binary
can be copied into a final environment. This allows a slimmer final
image that does not require the entire development stack.

Bootstrap: docker
From: golang:1.12.3-alpine3.9
Stage: devel

%post
 # prep environment
 export PATH="/go/bin:/usr/local/go/bin:$PATH"
 export HOME="/root"
 cd /root

 # insert source code, could also be copied from the host with %files
 cat << EOF > hello.go
 package main
 import "fmt"

 func main() {
 fmt.Printf("Hello World!\n")
 }
EOF

 go build -o hello hello.go

Install binary into the final image
Bootstrap: library
From: alpine:3.9
Stage: final

install binary from stage one
%files from devel
 /root/hello /bin/hello

The names of stages are arbitrary. Each of these sections will be
executed in the same order as described for a single stage build except
the files from the previous stage are copied before %setup section
of the next stage. Files can only be copied from stages declared before
the current stage in the definition. E.g., the devel stage in the
above definition cannot copy files from the final stage, but the
final stage can copy files from the devel stage.

SCIF Apps

SCIF is a standard for encapsulating multiple apps into a container. A
container with SCIF apps has multiple entry points, and you can choose
which to run easily. Each entry point can carry out a different task
with its own environment, metadata etc., without the need for a
collection of different containers.

SingularityCE implements SCIF, and you can read more about how to use it
below.

SCIF is not specific to SingularityCE. You can learn more about it at
the project’s site: https://sci-f.github.io/ which includes extended
tutorials, the specification, and other information.

SCIF %app* sections

SCIF apps within a SingularityCE container are created using %app*
sections in a definition file. These %app* sections, which will
impact the way the container runs a specific --app can exist
alongside any of the primary sections (i.e. %post,``%runscript``,
%environment, etc.). As with the other sections, the ordering of the
%app* sections isn’t important.

The following runscript demonstrates how to build 2 different apps into
the same container using SCIF modules:

Bootstrap: docker
From: ubuntu

%environment
 GLOBAL=variables
 AVAILABLE="to all apps"

##############################
foo
##############################

%apprun foo
 exec echo "RUNNING FOO"

%applabels foo
 BESTAPP FOO

%appinstall foo
 touch foo.exec

%appenv foo
 SOFTWARE=foo
 export SOFTWARE

%apphelp foo
 This is the help for foo.

%appfiles foo
 foo.txt

##############################
bar
##############################

%apphelp bar
 This is the help for bar.

%applabels bar
 BESTAPP BAR

%appinstall bar
 touch bar.exec

%appenv bar
 SOFTWARE=bar
 export SOFTWARE

An %appinstall section is the equivalent of %post but for a
particular app. Similarly, %appenv equates to the app version of
%environment and so on.

After installing apps into modules using the %app* sections, the
--app option becomes available allowing the following functions:

To run a specific app within the container:

% singularity run --app foo my_container.sif
RUNNING FOO

The same environment variable, $SOFTWARE is defined for both apps in
the def file above. You can execute the following command to search the
list of active environment variables and grep to determine if the
variable changes depending on the app we specify:

$ singularity exec --app foo my_container.sif env | grep SOFTWARE
SOFTWARE=foo

$ singularity exec --app bar my_container.sif env | grep SOFTWARE
SOFTWARE=bar

Best Practices for Build Recipes

When crafting your recipe, it is best to consider the following:

	Always install packages, programs, data, and files into operating
system locations (e.g. not /home, /tmp , or any other
directories that might get commonly binded on).

	Document your container. If your runscript doesn’t supply help, write
a %help or %apphelp section. A good container tells the user
how to interact with it.

	If you require any special environment variables to be defined, add
them to the %environment and %appenv sections of the build
recipe.

	Files should always be owned by a system account (UID less than 500).

	Ensure that sensitive files like /etc/passwd, /etc/group, and
/etc/shadow do not contain secrets.

	Build production containers from a definition file instead of a
sandbox that has been manually changed. This ensures the greatest
possibility of reproducibility and mitigates the “black box” effect.

Build Environment

Overview

You may wish to customize your build environment by doing things such as
specifying a custom cache directory for images or sending your Docker
Credentials to the registry endpoint. Here we will discuss these and
other topics related to the build environment.

Cache Folders

SingularityCE will cache SIF container images generated from remote
sources, and any OCI/docker layers used to create them. The cache is
created at $HOME/.singularity/cache by default. The location of the
cache can be changed by setting the SINGULARITY_CACHEDIR environment
variable.

When you run builds as root, using sudo, images will be cached in
root’s home at /root and not your user’s home. Use the -E option
to sudo to pass through the SINGULARITY_CACHEDIR environment
variable, if you set it.

$ export SINGULARITY_CACHEDIR=/tmp/user/temporary-cache

Running a build under your user account
$ singularity build --fakeroot myimage.sif mydef.def

Running a build with sudo, must use -E to pass env var
$ sudo -E singularity build myimage.sif mydef.def

If you change the value of SINGULARITY_CACHEDIR be sure to choose a
location that is:

	Unique to you. Permissions are set on the cache so that private
images cached for one user are not exposed to another. This means
that SINGULARITY_CACHEDIR cannot be shared.

	Located on a filesystem with sufficient space for the number and
size of container images anticipated.

	Located on a filesystem that supports atomic rename, if possible.

Warning

If you are not certain that your $HOME or
SINGULARITY_CACHEDIR filesystems support atomic rename, do not
run SingularityCE in parallel using remote container URLs. Instead
use singularity pull to create a local SIF image, and then run
this SIF image in a parallel step. An alternative is to use the
--disable-cache option, but this will result in each
SingularityCE instance independently fetching the container from the
remote source, into a temporary location.

Inside the cache location you will find separate directories for the
different kinds of data that are cached:

$HOME/.singularity/cache/blob
$HOME/.singularity/cache/library
$HOME/.singularity/cache/net
$HOME/.singularity/cache/oci-tmp
$HOME/.singularity/cache/shub

You can safely delete these directories, or content within them.
SingularityCE will re-create any directories and data that are needed in
future runs.

You should not add any additional files, or modify files in the cache,
as this may cause checksum / integrity errors when you run or build
containers. If you experience problems use singularity cache clean
to reset the cache to a clean, empty state.

BoltDB Corruption Errors

The library that SingularityCE uses to retrieve and cache Docker/OCI
layers keeps track of them using a single file database. If your home
directory is on a network filesystem which experiences interruptions, or
you run out of storage, it is possible for this database to become
inconsistent.

If you observe error messages when trying to run SingularityCE that
mention github.com/etcd-io/bbolt then you should remove the database
file:

rm ~/.local/share/containers/cache/blob-info-cache-v1.boltdb

Cache commands

The cache command for SingularityCE allows you to view and clean up
your cache, without manually inspecting the cache directories.

Note

If you have built images as root, directly or via sudo, the cache
location for those builds is /root/.singularity. You will need to
use sudo when running cache clean or cache list to manage
these cache entries.

Listing Cache

To view a summary of cache usage, use singularity cache list:

$ singularity cache list
There are 4 container file(s) using 59.45 MB and 23 oci blob file(s) using 379.10 MB of space
Total space used: 438.55 MB

To view detailed information, use singularity cache list -v:

$ singularity cache list -v
NAME DATE CREATED SIZE TYPE
0ed5a98249068fe0592edb 2020-05-27 12:57:22 192.21 MB blob
1d9cd1b99a7eca56d8f2be 2020-05-28 15:19:07 0.35 kB blob
219c332183ec3800bdfda4 2020-05-28 12:22:13 0.35 kB blob
2adae3950d4d0f11875568 2020-05-27 12:57:16 51.83 MB blob
376057ac6fa17f65688c56 2020-05-27 12:57:12 50.39 MB blob
496548a8c952b37bdf149a 2020-05-27 12:57:14 10.00 MB blob
5a63a0a859d859478f3046 2020-05-27 12:57:13 7.81 MB blob
5efaeecfa72afde779c946 2020-05-27 12:57:25 0.23 kB blob
6154df8ff9882934dc5bf2 2020-05-27 08:37:22 0.85 kB blob
70d0b3967cd8abe96c9719 2020-05-27 12:57:24 26.61 MB blob
8f5af4048c33630473b396 2020-05-28 15:19:07 0.57 kB blob
95c3f3755f37380edb2f8f 2020-05-28 14:07:20 2.48 kB blob
96878229af8adf91bcbf11 2020-05-28 14:07:20 0.81 kB blob
af88fdb253aac46693de78 2020-05-28 12:22:13 0.58 kB blob
bb94ffe723890b4d62d742 2020-05-27 12:57:23 6.15 MB blob
c080bf936f6a1fdd2045e3 2020-05-27 12:57:25 1.61 kB blob
cbdbe7a5bc2a134ca8ec91 2020-05-28 12:22:13 2.81 MB blob
d51af753c3d3a984351448 2020-05-27 08:37:21 28.56 MB blob
d9cbbca60e5f0fc028b13c 2020-05-28 15:19:06 760.85 kB blob
db8816f445487e48e1d614 2020-05-27 12:57:25 1.93 MB blob
fc878cd0a91c7bece56f66 2020-05-27 08:37:22 32.30 kB blob
fee5db0ff82f7aa5ace634 2020-05-27 08:37:22 0.16 kB blob
ff110406d51ca9ea722112 2020-05-27 12:57:25 7.78 kB blob
sha256.02ee8bf9dc335c2 2020-05-29 13:45:14 28.11 MB library
sha256.5111f59250ac94f 2020-05-28 13:14:39 782.34 kB library
747d2dbbaaee995098c979 2020-05-28 14:07:22 27.77 MB oci-tmp
9a839e63dad54c3a6d1834 2020-05-28 12:22:13 2.78 MB oci-tmp

There are 4 container file(s) using 59.45 MB and 23 oci blob file(s) using 379.10 MB of space
Total space used: 438.55 MB

All cache entries are named using a content hash, so that identical
layers or images that are pulled from different URIs do not consume more
space than needed.

Entries marked blob are OCI/docker layers and manifests, that are
used to create SIF format images in the oci-tmp cache. Other caches
are named for the source of the image e.g. library and oras.

You can limit the cache list to a specific cache type with the -type
/ -t option.

Cleaning the Cache

To reclaim space used by the SingularityCE cache, use singularity
cache clean.

By default singularity cache clean will remove all cache entries,
after asking you to confirm:

$ singularity cache clean
This will delete everything in your cache (containers from all sources and OCI blobs).
Hint: You can see exactly what would be deleted by canceling and using the --dry-run option.
Do you want to continue? [N/y] n

Use the --dry-run / -n option to see the files that would be
deleted, or the --force / -f option to clean without asking for
confirmation.

If you want to leave your most recent cached images in place, but remove
images that were cached longer ago, you can use the --days / -d
option. E.g. to clean cache entries older than 30 days:

$ singularity cache clean --days 30

To remove only a specific kind of cache entry, e.g. only library images,
use the type / -T option:

$ singularity cache clean --type library

Temporary Folders

When building a container, or pulling/running a SingularityCE container
from a Docker/OCI source, a temporary working space is required. The
container is constructed in this temporary space before being packaged
into a SingularityCE SIF image. Temporary space is also used when
running containers in unprivileged mode, and performing some operations
on filesystems that do not fully support --fakeroot.

The location for temporary directories defaults to /tmp.
SingularityCE will also respect the environment variable TMPDIR, and
both of these locations can be overridden by setting the environment
variable SINGULARITY_TMPDIR.

The temporary directory used during a build must be on a filesystem that
has enough space to hold the entire container image, uncompressed,
including any temporary files that are created and later removed during
the build. You may need to set SINGULARITY_TMPDIR when building a
large container on a system which has a small /tmp filesystem.

Remember to use -E option to pass the value of
SINGULARITY_TMPDIR to root’s environment when executing the
build command with sudo.

Warning

Many modern Linux distributions use an in-memory tmpfs filesystem
for /tmp when installed on a computer with a sufficient amount of
RAM. This may limit the size of container you can build, as temporary
directories under /tmp share RAM with runniing programs etc. A
tmpfs also uses default mount options that can interfere with
some container builds.

Set SINGULARITY_TMPDIR to a disk location, or disable the
tmpfs /tmp mount on your system if you experience problems.

Encrypted Containers

Beginning in SingularityCE 3.4.0 it is possible to build and run
encrypted containers. The containers are decrypted at runtime entirely
in kernel space, meaning that no intermediate decrypted data is ever
present on disk or in memory. See encrypted containers for more details.

Environment Variables

	If a flag is represented by both a CLI option and an environment
variable, and both are set, the CLI option will always take
precedence. This is true for all environment variables except for
SINGULARITY_BIND and SINGULARITY_BINDPATH which is combined
with the --bind option, argument pair if both are present.

	Environment variables overwrite default values in the CLI code

	Any defaults in the CLI code are applied.

Defaults

The following variables have defaults that can be customized by you via
environment variables at runtime.

Docker

SINGULARITY_DOCKER_LOGIN Used for the interactive login for Docker
Hub.

SINGULARITY_DOCKER_USERNAME Your Docker username.

SINGULARITY_DOCKER_PASSWORD Your Docker password.

RUNSCRIPT_COMMAND Is not obtained from the environment, but is a
hard coded default (“/bin/bash”). This is the fallback command used in
the case that the docker image does not have a CMD or ENTRYPOINT.
TAG Is the default tag, latest.

SINGULARITY_NOHTTPS This is relevant if you want to use a registry
that doesn’t have https, and it speaks for itself. If you export the
variable SINGULARITY_NOHTTPS you can force the software to not use
https when interacting with a Docker registry. This use case is
typically for use of a local registry.

Library

SINGULARITY_BUILDER Used to specify the remote builder service URL.
The default value is our remote builder.

SINGULARITY_LIBRARY Used to specify the library to pull from.
Default is set to our Cloud Library.

SINGULARITY_REMOTE Used to build an image remotely (This does not
require root). The default is set to false.

Encryption

SINGULARITY_ENCRYPTION_PASSPHRASE Used to pass a plaintext
passphrase to encrypt a container file system (with the --encrypt
flag). The default is empty.

SINGULARITY_ENCRYPTION_PEM_PATH Used to specify the location of a
public key to use for container encryption (with the --encrypt
flag). The default is empty.

Fakeroot feature

Overview

The fakeroot feature (commonly referred as rootless mode) allows an
unprivileged user to run a container as a “fake root” user by
leveraging user namespace UID/GID mapping [http://man7.org/linux/man-pages/man7/user_namespaces.7.html].

Note

This feature requires a Linux kernel >= 3.8, but the recommended
version is >= 3.18

A “fake root” user has almost the same administrative rights as root
but only inside the container and the requested namespaces,
which means that this user:

	can set different user/group ownership for files or directories
they own

	can change user/group identity with su/sudo commands

	has full privileges inside the requested namespaces (network, ipc,
uts)

Restrictions/security

Filesystem

A “fake root” user can’t access or modify files and directories for
which they don’t already have access or rights on the host filesystem,
so a “fake root” user won’t be able to access root-only host files
like /etc/shadow or the host /root directory.

Additionally, all files or directories created by the “fake root”
user are owned by root:root inside container but as user:group
outside of the container. Let’s consider the following example, in this
case “user” is authorized to use the fakeroot feature and can use 65536
UIDs starting at 131072 (same thing for GIDs).

	UID inside container

	UID outside container

	0 (root)

	1000 (user)

	1 (daemon)

	131072 (non-existent)

	2 (bin)

	131073 (non-existent)

	…

	…

	65536

	196607

Which means if the “fake root” user creates a file under a bin
user in the container, this file will be owned by 131073:131073
outside of container. The responsibility relies on the administrator to
ensure that there is no overlap with the current user’s UID/GID on the
system.

Network

Restrictions are also applied to networking, if singularity is
executed without the --net flag, the “fake root” user won’t be
able to use ping or bind a container service to a port below 1024.

With --net the “fake root” user has full privileges in a
dedicated container network. Inside the container network they can bind
on privileged ports below 1024, use ping, manage firewall rules, listen
to traffic, etc. Anything done in this dedicated network won’t affect
the host network.

Note

Of course an unprivileged user could not map host ports below than
1024 by using: --network-args="portmap=80:80/tcp"

Warning

For unprivileged installation of SingularityCE or if allow setuid =
no is set in singularity.conf users won’t be able to use a
fakeroot network.

Requirements / Configuration

Fakeroot depends on user mappings set in /etc/subuid and group
mappings in /etc/subgid, so your username needs to be listed in
those files with a valid mapping (see the admin-guide for details), if
you can’t edit the files ask an administrator.

In SingularityCE 3.5 a singularity config fakeroot command has
been added to allow configuration of the /etc/subuid and
/etc/subgid mappings from the SingularityCE command line. You must
be a root user or run with sudo to use config fakeroot, as the
mapping files are security sensitive. See the admin-guide for more
details.

Usage

If your user account is configured with valid subuid and subgid
mappings you work as a fake root user inside a container by using the
--fakeroot or -f option.

The --fakeroot option is available with the following singularity
commands:

	shell

	exec

	run

	instance start

	build

Build

With fakeroot an unprivileged user can now build an image from a
definition file with few restrictions. Some bootstrap methods that
require creation of block devices (like /dev/null) may not always
work correctly with “fake root”, SingularityCE uses seccomp filters
to give programs the illusion that block device creation succeeded. This
appears to work with yum bootstraps and may work with other
bootstrap methods, although debootstrap is known to not work.

Examples

Build from a definition file:

singularity build --fakeroot /tmp/test.sif /tmp/test.def

Ping from container:

singularity exec --fakeroot --net docker://alpine ping -c1 8.8.8.8

HTTP server:

singularity run --fakeroot --net --network-args="portmap=8080:80/tcp" -w docker://nginx

Signing and Verifying Containers

SingularityCE 3.0 introduced the ability to create and manage PGP keys
and use them to sign and verify containers. This provides a trusted
method for SingularityCE users to share containers. It ensures a
bit-for-bit reproduction of the original container as the author
intended it.

Note

SingularityCE 3.6.0 uses a new signature format. Containers signed by
3.6.0 cannot be verified by older versions of SingularityCE.

To verify containers signed with older versions of SingularityCE
using 3.6.0 the --legacy-insecure flag must be provided to the
singularity verify command.

Verifying containers from the Container Library

The verify command will allow you to verify that a container has
been signed using a PGP key. To use this feature with images that you
pull from the container library, you must first generate an access token
to the Sylabs Cloud. If you don’t already have a valid access token,
follow these steps:

	Go to: https://cloud.sylabs.io/

	Click “Sign In” and follow the sign in steps.

	Click on your login id (same and updated button as the Sign in
one).

	Select “Access Tokens” from the drop down menu.

	Enter a name for your new access token, such as “test token”

	Click the “Create a New Access Token” button.

	Click “Copy token to Clipboard” from the “New API Token” page.

	Run singularity remote login and paste the access token at the
prompt.

Now you can verify containers that you pull from the library, ensuring
they are bit-for-bit reproductions of the original image.

$ singularity verify alpine_latest.sif

Container is signed by 1 key(s):

Verifying partition: FS:
8883491F4268F173C6E5DC49EDECE4F3F38D871E
[REMOTE] Sylabs Admin <support@sylabs.io>
[OK] Data integrity verified

INFO: Container verified: alpine_latest.sif

In this example you can see that Sylabs Admin has signed the
container.

Signing your own containers

Generating and managing PGP keys

To sign your own containers you first need to generate one or more keys.

If you attempt to sign a container before you have generated any keys,
SingularityCE will guide you through the interactive process of creating
a new key. Or you can use the newpair subcommand in the key
command group like so:.

$ singularity key newpair

Enter your name (e.g., John Doe) : David Trudgian
Enter your email address (e.g., john.doe@example.com) : david.trudgian@sylabs.io
Enter optional comment (e.g., development keys) : demo
Enter a passphrase :
Retype your passphrase :
Would you like to push it to the keystore? [Y,n] Y
Generating Entity and OpenPGP Key Pair... done
Key successfully pushed to: https://keys.sylabs.io

Note that I chose Y when asked if I wanted to push my key to the
keystore. This will push my public key to whichever keystore has been
configured by the singularity remote command, so that it can be
retrieved by other users running singularity verify. If you do not
wish to push your public key, say n during the newpair process.

The list subcommand will show you all of the keys you have created
or saved locally.`

$ singularity key list

Public key listing (/home/dave/.singularity/sypgp/pgp-public):

0) U: David Trudgian (demo) <david.trudgian@sylabs.io>
 C: 2019-11-15 09:54:54 -0600 CST
 F: E5F780B2C22F59DF748524B435C3844412EE233B
 L: 4096

In the output above the index of my key is 0 and the letters stand
for the following:

	U: User

	C: Creation date and time

	F: Fingerprint

	L: Key length

If you chose not to push your key to the keystore during the newpair
process, but later wish to, you can push it to a keystore configured
using singularity remote like so:

$ singularity key push E5F780B2C22F59DF748524B435C3844412EE233B

public key `E5F780B2C22F59DF748524B435C3844412EE233B` pushed to server successfully

If you delete your local public PGP key, you can always locate and
download it again like so.

$ singularity key search Trudgian

Showing 1 results

KEY ID BITS NAME/EMAIL
12EE233B 4096 David Trudgian (demo) <david.trudgian@sylabs.io>

$ singularity key pull 12EE233B

1 key(s) added to keyring of trust /home/dave/.singularity/sypgp/pgp-public

But note that this only restores the public key (used for verifying)
to your local machine and does not restore the private key (used for
signing).

Searching for keys

SingularityCE allows you to search the keystore for public keys. You can
search for names, emails, and fingerprints (key IDs). When searching for
a fingerprint, you need to use 0x before the fingerprint, check the
example:

search for key ID:
$ singularity key search 0x8883491F4268F173C6E5DC49EDECE4F3F38D871E

search for the sort ID:
$ singularity key search 0xF38D871E

search for user:
$ singularity key search Godlove

search for email:
$ singularity key search @gmail.com

Signing and validating your own containers

Now that you have a key generated, you can use it to sign images like
so:

$ singularity sign my_container.sif

Signing image: my_container.sif
Enter key passphrase :
Signature created and applied to my_container.sif

Because your public PGP key is saved locally you can verify the image
without needing to contact the Keystore.

$ singularity verify my_container.sif
Verifying image: my_container.sif
[LOCAL] Signing entity: David Trudgian (Demo keys) <david.trudgian@sylabs.io>
[LOCAL] Fingerprint: 65833F473098C6215E750B3BDFD69E5CEE85D448
Objects verified:
ID |GROUP |LINK |TYPE
--
1 |1 |NONE |Def.FILE
2 |1 |NONE |JSON.Generic
3 |1 |NONE |FS
Container verified: my_container.sif

If you’ve pushed your key to the Keystore you can also verify this image
in the absence of a local public key. To demonstrate this, first
remove your local public key, and then try to use the verify
command again.

$ singularity key remove E5F780B2C22F59DF748524B435C3844412EE233B

$ singularity verify my_container.sif
Verifying image: my_container.sif
[REMOTE] Signing entity: David Trudgian (Demo keys) <david.trudgian@sylabs.io>
[REMOTE] Fingerprint: 65833F473098C6215E750B3BDFD69E5CEE85D448
Objects verified:
ID |GROUP |LINK |TYPE
--
1 |1 |NONE |Def.FILE
2 |1 |NONE |JSON.Generic
3 |1 |NONE |FS
Container verified: my_container.sif

Note that the [REMOTE] message shows the key used for verification
was obtained from the keystore, and is not present on your local
computer. You can retrieve it, so that you can verify even if you are
offline with singularity key pull

$ singularity key pull E5F780B2C22F59DF748524B435C3844412EE233B

1 key(s) added to keyring of trust /home/dave/.singularity/sypgp/pgp-public

Advanced Signing - SIF IDs and Groups

As well as the default behaviour, which signs all objects, fine-grained
control of signing is possible.

If you sif list a SIF file you will see it is comprised of a number
of objects. Each object has an ID, and belongs to a GROUP.

$ singularity sif list my_container.sif

Container id: e455d2ae-7f0b-4c79-b3ef-315a4913d76a
Created on: 2019-11-15 10:11:58 -0600 CST
Modified on: 2019-11-15 10:11:58 -0600 CST
--
Descriptor list:
ID |GROUP |LINK |SIF POSITION (start-end) |TYPE
--
1 |1 |NONE |32768-32800 |Def.FILE
2 |1 |NONE |36864-36961 |JSON.Generic
3 |1 |NONE |40960-25890816 |FS (Squashfs/*System/amd64)

I can choose to sign and verify a specific object with the --sif-id
option to sign and verify.

$ singularity sign --sif-id 1 my_container.sif
Signing image: my_container.sif
Enter key passphrase :
Signature created and applied to my_container.sif

$ singularity verify --sif-id 1 my_container.sif
Verifying image: my_container.sif
[LOCAL] Signing entity: David Trudgian (Demo keys) <david.trudgian@sylabs.io>
[LOCAL] Fingerprint: 65833F473098C6215E750B3BDFD69E5CEE85D448
Objects verified:
ID |GROUP |LINK |TYPE
--
1 |1 |NONE |Def.FILE
Container verified: my_container.sif

Note that running the verify command without specifying the specific
sif-id gives a fatal error. The container is not considered verified as
whole because other objects could have been changed without my
knowledge.

$ singularity verify my_container.sif
Verifying image: my_container.sif
[LOCAL] Signing entity: David Trudgian (Demo keys) <david.trudgian@sylabs.io>
[LOCAL] Fingerprint: 65833F473098C6215E750B3BDFD69E5CEE85D448

Error encountered during signature verification: object 2: object not signed
FATAL: Failed to verify container: integrity: object 2: object not signed

I can sign a group of objects with the --group-id option to
sign.

$ singularity sign --groupid 1 my_container.sif
Signing image: my_container.sif
Enter key passphrase :
Signature created and applied to my_container.sif

This creates one signature over all objects in the group. I can verify
that nothing in the group has been modified by running verify with
the same --group-id option.

$ singularity verify --group-id 1 my_container.sif
Verifying image: my_container.sif
[LOCAL] Signing entity: David Trudgian (Demo keys) <david.trudgian@sylabs.io>
[LOCAL] Fingerprint: 65833F473098C6215E750B3BDFD69E5CEE85D448
Objects verified:
ID |GROUP |LINK |TYPE
--
1 |1 |NONE |Def.FILE
2 |1 |NONE |JSON.Generic
3 |1 |NONE |FS
Container verified: my_container.sif

Because every object in the SIF file is within the signed group 1 the
entire container is signed, and the default verify behavior without
specifying --group-id can also verify the container:

$ singularity verify my_container.sif
Verifying image: my_container.sif
[LOCAL] Signing entity: David Trudgian (Demo keys) <david.trudgian@sylabs.io>
[LOCAL] Fingerprint: 65833F473098C6215E750B3BDFD69E5CEE85D448
Objects verified:
ID |GROUP |LINK |TYPE
--
1 |1 |NONE |Def.FILE
2 |1 |NONE |JSON.Generic
3 |1 |NONE |FS
Container verified: my_container.sif

Key commands

SingularityCE 3.2 introduces the abilities to import, export and remove
PGP keys following the OpenPGP standard via GnuPGP (GPG) [https://www.gnupg.org/gph/en/manual.html]. These commands only modify
the local keyring and are not related to the cloud keystore.

Changes in SingularityCE 3.7

SingularityCE 3.7 introduces a global keyring which can be managed by
administrators with the new --global option. This global keyring is
used by ECL
(https://sylabs.io/guides/3.10/admin-guide/configfiles.html#ecl-toml)
and allows administrators to manage public keys used during ECL image
verification.

Key import command

SingularityCE 3.2 allows you import keys reading either from binary or
armored key format and automatically detect if it is a private or public
key and add it to the correspondent local keystore.

To give a quick view on how it works, we will first consider the case in
which a user wants to import a secret (private) key to the local
keystore.

First we will check what’s the status of the local keystore (which keys
are stored by the moment before importing a new key).

$ singularity key list --secret

Note

Remember that using --secret flag or -s flag will return the
secret or private local keyring as output.

The output will look as it follows:

Private key listing (/home/joana/.singularity/sypgp/pgp-secret):

0) U: Johnny Cash (none) <cash@sylabs.io>
C: 2019-04-11 22:22:28 +0200 CEST
F: 47282BDC661F58FA4BEBEF47CA576CBD8EF1A2B4
L: 3072

1) U: John Green (none) <john@sylabs.io>
C: 2019-04-11 13:08:45 +0200 CEST
F: 5720799FE7B048CF36FAB8445EE1E2BD7B6342C5
L: 1024

Note

Remember that running that same command but with sudo privilege, will
give you a totally different list since it will be the correspondent
keystore from user root

After this, you can simply import the key you need by adding the exact
location to the file, let’s say you own a gpg key file named
pinkie-pie.asc which is a secret GPG key you want to import. Then
you will just need to run the following command to import your key:

$ singularity key import $HOME/pinkie-pie.asc

Note

This location is considering your key was located on the $HOME
directory. You can specify any location to the file.

Since you’re importing a private (secret) key, you will need to specify
the passphrase related to it and then a new passphrase to be added on
your local keystore.

Enter your old password :
Enter a new password for this key :
Retype your passphrase :
Key with fingerprint 8C10B902F438E4D504C3ACF689FCFFAED5F34A77 successfully added to the keyring

After this you can see if that key was correctly added to your local
keystore by running singularity key list -s command:

Private key listing (/home/joana/.singularity/sypgp/pgp-secret):

 0) U: Johnny Cash (none) <cash@sylabs.io>
 C: 2019-04-11 22:22:28 +0200 CEST
 F: 47282BDC661F58FA4BEBEF47CA576CBD8EF1A2B4
 L: 3072

 1) U: John Green (none) <john@sylabs.io>
 C: 2019-04-11 13:08:45 +0200 CEST
 F: 5720799FE7B048CF36FAB8445EE1E2BD7B6342C5
 L: 1024

 3) U: Pinkie Pie (Eternal chaos comes with chocolate rain!) <balloons@sylabs.io>
 C: 2019-04-26 12:07:07 +0200 CEST
 F: 8C10B902F438E4D504C3ACF689FCFFAED5F34A77
 L: 1024

You will see the imported key at the bottom of the list. Remember you
can also import an ascii armored key and this will be automatically
detected by the key import command (no need to specify the format).

Note

In case you would like to import a public key the process remains the
same, as the import command will automatically detect whether this
key to be imported is either public or private.

Key export command

The key export command allows you to export a key that is on your local
keystore. This key could be either private or public, and the key can be
exported on ASCII armored format or on binary format. Of course to
identify the keystore and the format the syntax varies from the key
import command.

For example to export a public key in binary format you can run:

$ singularity key export 8C10B902F438E4D504C3ACF689FCFFAED5F34A77 $HOME/mykey.asc

This will export a public binary key named mykey.asc and will save
it under the home folder. If you would like to export the same public
key but in an ASCII armored format, you would need to run the
following command:

$ singularity key export --armor 8C10B902F438E4D504C3ACF689FCFFAED5F34A77 $HOME/mykey.asc

And in the case in which you may need to export a secret key on
ASCII armored format, you would need to specify from where to find
the key, since the fingerprint is the same.

$ singularity key export --armor --secret 8C10B902F438E4D504C3ACF689FCFFAED5F34A77 $HOME/mykey.asc

and on binary format instead:

$ singularity key export --secret 8C10B902F438E4D504C3ACF689FCFFAED5F34A77 $HOME/mykey.asc

Note

Exporting keys will not change the status of your local keystore or
keyring. This will just obtain the content of the keys and save it on
a local file on your host.

Key remove command

In case you would want to remove a public key from your public local
keystore, you can do so by running the following command:

$ singularity key remove 8C10B902F438E4D504C3ACF689FCFFAED5F34A77

Note

Remember that this will only delete the public key and not the
private one with the same matching fingerprint.

Encrypted Containers

Users can build a secure, confidential container environment by
encrypting the root file system.

Overview

In SingularityCE >= v3.4.0 a new feature to build and run encrypted
containers has been added to allow users to encrypt the file system
image within a SIF. This encryption can be performed using either a
passphrase or asymmetrically via an RSA key pair in Privacy Enhanced
Mail (PEM/PKCS1) format. The container is encrypted in transit, at rest,
and even while running. In other words, there is no intermediate,
decrypted version of the container on disk. Container decryption occurs
at runtime completely within kernel space.

Note

This feature utilizes the Linux dm-crypt library and
cryptsetup utility and requires cryptsetup version of >= 2.0.0.
This version should be standard with recent Linux versions such as
Ubuntu 18.04, Debian 10 and CentOS/RHEL 7, but users of older Linux
versions may have to update.

Encrypting a container

A container can be encrypted either by supplying a plaintext passphrase
or a PEM file containing an asymmetric RSA public key. Of these two
methods the PEM file is more secure and is therefore recommended for
production use.

Note

In SingularityCE 3.4, the definition file stored with the container
will not be encrypted. If it contains sensitive information you
should remove it before encryption via singularity sif del 1
myimage.sif. Metadata encryption will be addressed in a future
release.

An -e|--encrypt flag to singularity build is used to indicate
that the container needs to be encrypted.

A passphrase or a key-file used to perform the encryption is supplied at
build time via an environment variable or a command line option.

	Encryption Method

	Environment Variable

	Commandline Option

	Passphrase

	SINGULARITY_ENCRYPTION_PASSPHRASE

	--passphrase

	Asymmetric Key (PEM)

	SINGULARITY_ENCRYPTION_PEM_PATH

	--pem-path

The -e|--encrypt flag is implicitly set when the --passphrase or
--pem-path flags are passed with the build command. If multiple
encryption related flags and/or environment variables are set, the
following precedence is respected.

	--pem-path

	--passphrase

	SINGULARITY_ENCRYPTION_PEM_PATH

	SINGULARITY_ENCRYPTION_PASSPHRASE

Passphrase Encryption

Note

Passphrase encryption is less secure than encrypting containers using
an RSA key pair (detailed below). Passphrase encryption is provided
as a convenience, and as a way for users to familiarize themselves
with the encrypted container workflow, but users running encrypted
containers in production are encouraged to use asymmetric keys.

In case of plaintext passphrase encryption, a passphrase is supplied by
one of the following methods.

Encrypting with a passphrase interactively

$ sudo singularity build --passphrase encrypted.sif encrypted.def
Enter encryption passphrase: <secret>
INFO: Starting build...

Using an environment variable

$ sudo SINGULARITY_ENCRYPTION_PASSPHRASE=<secret> singularity build --encrypt encrypted.sif encrypted.def
Starting build...

In this case it is necessary to use the --encrypt flag since the
presence of an environment variable alone will not trigger the encrypted
build workflow.

While this example shows how an environment variable can be used to set
a passphrase, you should set the environment variable in a way that will
not record your passphrase on the command line. For instance, you could
save a plain text passphrase in a file (e.g. secret.txt) and use it
like so.

$ export SINGULARITY_ENCRYPTION_PASSPHRASE=$(cat secret.txt)

$ sudo -E singularity build --encrypt encrypted.sif encrypted.def
Starting build...

PEM File Encryption

SingularityCE currently supports RSA encryption using a public/private
key-pair. Keys are supplied in PEM format. The public key is used to
encrypt containers that can be decrypted on a host that has access to
the secret private key.

You can create a pair of RSA keys suitable for encrypting your container
with the ssh-keygen command, and then create a PEM file with a few
specific flags like so:

Generate a key pair
$ ssh-keygen -t rsa -b 2048
Generating public/private rsa key pair.
Enter file in which to save the key (/home/vagrant/.ssh/id_rsa): rsa
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
[snip...]

Convert the public key to PEM PKCS1 format
$ ssh-keygen -f ./rsa.pub -e -m pem >rsa_pub.pem

Rename the private key (already PEM PKCS1) to a nice name
$ mv rsa rsa_pri.pem

You would use the rsa_pub.pem file to encrypt your container and the
rsa_pri.pem file to run it.

Encrypting with a command line option

$ sudo singularity build --pem-path=rsa_pub.pem encrypted.sif encrypted.def
Starting build...

Encrypting with an environment variable

$ sudo SINGULARITY_ENCRYPTION_PEM_PATH=rsa_pub.pem singularity build --encrypt encrypted.sif encrypted.def
Starting build...

In this case it is necessary to use the --encrypt flag since the
presence of an environment variable alone will not trigger the encrypted
build workflow.

Running an encrypted container

To run, shell, or exec an encrypted image, credentials to
decrypt the image need to be supplied at runtime either in a key-file or
a plaintext passphrase.

Running a container encrypted with a passphrase

A passphrase can be supplied at runtime by either of the ways listed in
the sections above.

Running with a passphrase interactively

$ singularity run --passphrase encrypted.sif
Enter passphrase for encrypted container: <secret>

Running with a passphrase in an environment variable

$ SINGULARITY_ENCRYPTION_PASSPHRASE="secret" singularity run encrypted.sif

While this example shows how an environment variable can be used to set
a passphrase, you should set the environment variable in a way that will
not record your passphrase on the command line. For instance, you could
save a plain text passphrase in a file (e.g. secret.txt) and use it
like so.

$ export SINGULARITY_ENCRYPTION_PASSPHRASE=$(cat secret.txt)

$ singularity run encrypted.sif

Running a container encrypted with a PEM file

A private key is supplied using either of the methods listed in the
Encryption section above.

Running using a command line option

$ singularity run --pem-path=rsa_pri.pem encrypted.sif

Running using an environment variable

$ SINGULARITY_ENCRYPTION_PEM_PATH=rsa_pri.pem singularity run encrypted.sif

Remote Endpoints

Overview

The remote command group allows users to manage the service
endpoints SingularityCE will interact with for many common command
flows. This includes managing credentials for image storage services,
remote builders, and key servers used to locate public keys for SIF
image verification. Currently, there are three main types of remote
endpoints managed by this command group: the public Sylabs Cloud (or
local SingularityCE Enterprise installation), OCI registries and
keyservers.

Public Sylabs Cloud

Sylabs introduced the online Sylabs Cloud [https://cloud.sylabs.io/home] to enable users to Create [https://cloud.sylabs.io/builder], Secure [https://cloud.sylabs.io/keystore?sign=true], and Share [https://cloud.sylabs.io/library] their container images with others.

A fresh, default installation of SingularityCE is configured to connect
to the public cloud.sylabs.io [https://cloud.sylabs.io] services. If
you only want to use the public services you just need to obtain an
authentication token, and then singularity remote login:

	Go to: https://cloud.sylabs.io/

	Click “Sign In” and follow the sign in steps.

	Click on your login id (same and updated button as the Sign in
one).

	Select “Access Tokens” from the drop down menu.

	Enter a name for your new access token, such as “test token”

	Click the “Create a New Access Token” button.

	Click “Copy token to Clipboard” from the “New API Token” page.

	Run singularity remote login and paste the access token at the
prompt.

Once your token is stored, you can check that you are able to connect to
the services with the status subcommand:

$ singularity remote status
INFO: Checking status of default remote.
SERVICE STATUS VERSION URI
Builder OK v1.1.14-0-gc7a68c1 https://build.sylabs.io
Consent OK v1.0.2-0-g2a24b4a https://auth.sylabs.io/consent
Keyserver OK v1.13.0-0-g13c778b https://keys.sylabs.io
Library OK v1.0.16-0-gb7eeae4 https://library.sylabs.io
Token OK v1.0.2-0-g2a24b4a https://auth.sylabs.io/token
INFO: Access Token Verified!

Valid authentication token set (logged in).

If you see any errors you may need to check if your system requires
proxy environment variables to be set, or if a firewall is blocking
access to *.sylabs.io. Talk to your system administrator.

You can interact with the public Sylabs Cloud using various
SingularityCE commands:

pull [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_pull.html],
push [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_push.html],
build –remote [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_build.html#options],
key [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_key.html],
search [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_search.html],
verify [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_verify.html],
exec [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_exec.html],
shell [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_shell.html],
run [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_run.html],
instance [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_instance.html]

Note

Using docker://, oras:// and shub:// URIs with these
commands does not interact with the Sylabs Cloud.

Managing Remote Endpoints

Users can setup and switch between multiple remote endpoints, which are
stored in their ~/.singularity/remote.yaml file. Alternatively,
remote endpoints can be set system-wide by an administrator.

A remote endpoint may be the public Sylabs Cloud, a private installation
of Singularity Enterprise, or community-developed service that are API
compatible.

Generally, users and administrators should manage remote endpoints using
the singularity remote command, and avoid editing remote.yaml
configuration files directly.

List and Login to Remotes

To list existing remote endpoints, run this:

$ singularity remote list

Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io YES YES NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.sylabs.io YES NO 1*

The YES in the ACTIVE column for SylabsCloud shows that this
is the current default remote endpoint.

To login to a remote, for the first time or if your token expires or
was revoked:

Login to the default remote endpoint
$ singularity remote login

Login to another remote endpoint
$ singularity remote login <remote_name>

example...
$ singularity remote login SylabsCloud
singularity remote login SylabsCloud
INFO: Authenticating with remote: SylabsCloud
Generate an API Key at https://cloud.sylabs.io/auth/tokens, and paste here:
API Key:
INFO: API Key Verified!

If you login to a remote that you already have a valid token for,
you will be prompted, and the new token will be verified, before it
replaces your existing credential. If you enter an incorrect token your
existing token will not be replaced:

$ singularity remote login
An access token is already set for this remote. Replace it? [N/y]y
Generate an access token at https://cloud.sylabs.io/auth/tokens, and paste it here.
Token entered will be hidden for security.
Access Token:
FATAL: while verifying token: error response from server: Invalid Credentials

Previous token is still in place

Note

It is important for users to be aware that the login command will
store the supplied credentials or tokens unencrypted in your home
directory.

Add & Remove Remotes

To add a remote endpoint (for the current user only):

$ singularity remote add <remote_name> <remote_uri>

For example, if you have an installation of SingularityCE enterprise
hosted at enterprise.example.com:

$ singularity remote add myremote https://enterprise.example.com

INFO: Remote "myremote" added.
INFO: Authenticating with remote: myremote
Generate an API Key at https://enterprise.example.com/auth/tokens, and paste here:
API Key:

You will be prompted to setup an API key as the remote is added. The web
address needed to do this will always be given.

To add a global remote endpoint (available to all users on the
system) an administrative user should run:

$ sudo singularity remote add --global <remote_name> <remote_uri>

example..

$ sudo singularity remote add --global company-remote https://enterprise.example.com
INFO: Remote "company-remote" added.
INFO: Global option detected. Will not automatically log into remote.

Note

Global remote configurations can only be modified by the root user
and are stored in the etc/singularity/remote.yaml file, at the
SingularityCE installation location.

Conversely, to remove an endpoint:

$ singularity remote remove <remote_name>

Use the --global option as the root user to remove a global
endpoint:

$ sudo singularity remote remove --global <remote_name>

Insecure (HTTP) Endpoints

From SingularityCE 3.9, if you are using a endpoint that exposes its
service discovery file over an insecure HTTP connection only, it can be
added by specifying the --insecure flag:

$ sudo singularity remote add --global --insecure test http://test.example.com
INFO: Remote "test" added.
INFO: Global option detected. Will not automatically log into remote.

This flag controls HTTP vs HTTPS for service discovery only. The
protocol used to access individual library, build and keyservice URLs is
set by the service discovery file.

Set the Default Remote

A remote endpoint can be set as the default to use with commands such as
push, pull etc. via remote use:

$ singularity remote use <remote_name>

The default remote shows up with a YES under the ACTIVE column
in the output of remote list:

$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io YES YES NO
company-remote enterprise.example.com NO YES NO
myremote enterprise.example.com NO NO NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.sylabs.io YES NO 1*

* Active cloud services keyserver

$ singularity remote use myremote
INFO: Remote "myremote" now in use.

$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io NO YES NO
company-remote enterprise.example.com NO YES NO
myremote enterprise.example.com YES NO NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.example.com YES NO 1*

* Active cloud services keyserver

SingularityCE 3.7 introduces the ability for an administrator to make a
remote the only usable remote for the system by using the
--exclusive flag:

$ sudo singularity remote use --exclusive company-remote
INFO: Remote "company-remote" now in use.
$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io NO YES NO
company-remote enterprise.example.com YES YES YES
myremote enterprise.example.com NO NO NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.example.com YES NO 1*

* Active cloud services keyserver

This, in turn, prevents users from changing the remote they use:

$ singularity remote use myremote
FATAL: could not use myremote: remote company-remote has been set exclusive by the system administrator

If you do not want to switch remote with remote use you can:

	Make push and pull use an alternative library server with the
--library option.

	Make build --remote use an alternative remote builder with the
--builder option.

	Make keys use an alternative keyserver with the -url option.

Keyserver Configurations

By default, SingularityCE will use the keyserver correlated to the
active cloud service endpoint. This behavior can be changed or
supplemented via the add-keyserver and remove-keyserver
commands. These commands allow an administrator to create a global list
of key servers used to verify container signatures by default, where
order 1 is the first in the list. Other operations performed by
SingularityCE that reach out to a keyserver will only use the first
entry, or order 1, keyserver.

When we list our default remotes, we can see that the default keyserver
is https://keys.sylabs.io and the asterisk next to its order
indicates that it is the keyserver associated to the current remote
endpoint. We can also see the INSECURE column indicating that
SingularityCE will use TLS when communicating with the keyserver.

$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io YES YES NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.sylabs.io YES NO 1*

* Active cloud services keyserver

We can add a key server to list of keyservers with:

$ sudo singularity remote add-keyserver https://pgp.example.com
$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io YES YES NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.sylabs.io YES NO 1*
https://pgp.example.com YES NO 2

* Active cloud services keyserver

Here we can see that the https://pgp.example.com keyserver was
appended to our list. If we would like to specify the order in the list
that this key is placed, we can use the --order flag:

$ sudo singularity remote add-keyserver --order 1 https://pgp.example.com
$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io YES YES NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://pgp.example.com YES NO 1
https://keys.sylabs.io YES NO 2*

* Active cloud services keyserver

Since we specified --order 1, the https://pgp.example.com
keyserver was placed as the first entry in the list and the default
keyserver was moved to second in the list. With the keyserver
configuration above, all image default image verification performed by
SingularityCE will first reach out to https://pgp.example.com and
then to https://keys.sylabs.io when searching for public keys.

If a keyserver requires authentication before usage, users can login
before using it:

$ singularity remote login --username ian https://pgp.example.com
Password (or token when username is empty):
INFO: Token stored in /home/ian/.singularity/remote.yaml

Now we can see that https://pgp.example.com is logged in:

$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io YES YES NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://pgp.example.com YES NO 1
https://keys.sylabs.io YES NO 2*

* Active cloud services keyserver

Authenticated Logins
=================================

URI INSECURE
https://pgp.example.com NO

Note

It is important for users to be aware that the login command will
store the supplied credentials or tokens unencrypted in your home
directory.

Managing OCI Registries

It is common for users of SingularityCE to use OCI registries as sources
for their container images. Some registries require credentials to
access certain images or the registry itself. Previously, the only
methods in SingularityCE to supply credentials to registries were to
supply credentials for each command or set environment variables for a
single registry. See Authentication via Interactive Login and Authentication via
Environment Variables

SingularityCE 3.7 introduces the ability for users to supply credentials
on a per registry basis with the remote command group.

Users can login to an oci registry with the remote login command by
specifying a docker:// prefix to the registry hostname:

$ singularity remote login --username ian docker://docker.io
Password (or token when username is empty):
INFO: Token stored in /home/ian/.singularity/remote.yaml

$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io YES YES NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.sylabs.io YES NO 1*

* Active cloud services keyserver

Authenticated Logins
=================================

URI INSECURE
docker://docker.io NO

Now we can see that docker://docker.io shows up under
Authenticated Logins and SingularityCE will automatically supply the
configured credentials when interacting with DockerHub. We can also see
the INSECURE column indicating that SingularityCE will use TLS when
communicating with the registry.

We can login to multiple OCI registries at the same time:

$ singularity remote login --username ian docker://registry.example.com
Password (or token when username is empty):
INFO: Token stored in /home/ian/.singularity/remote.yaml

$ singularity remote list
Cloud Services Endpoints
========================

NAME URI ACTIVE GLOBAL EXCLUSIVE
SylabsCloud cloud.sylabs.io YES YES NO

Keyservers
==========

URI GLOBAL INSECURE ORDER
https://keys.sylabs.io YES NO 1*

* Active cloud services keyserver

Authenticated Logins
=================================

URI INSECURE
docker://docker.io NO
docker://registry.example.com NO

SingularityCE will supply the correct credentials for the registry based
off of the hostname when using the following commands with a
docker:// or oras:// URI:

pull [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_pull.html],
push [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_push.html],
build [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_build.html],
exec [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_exec.html],
shell [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_shell.html],
run [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_run.html],
instance [https://www.sylabs.io/guides/3.10/user-guide/cli/singularity_instance.html]

Note

It is important for users to be aware that the login command will
store the supplied credentials or tokens unencrypted in your home
directory.

Cloud Library

Overview

The Sylabs Cloud Library is the place to push your
containers to the cloud so other users can pull,
verify, and use them.

The Sylabs Cloud also provides a Remote Builder,
allowing you to build containers on a secure remote service. This is
convenient so that you can build containers on systems where you do not
have root privileges.

Make an Account

Making an account is easy, and straightforward:

	Go to: https://cloud.sylabs.io/library.

	Click “Sign in to Sylabs” (top right corner).

	Select your method to sign in, with Google, GitHub, GitLab, or
Microsoft.

	Type your passwords, and that’s it!

Creating a Access token

Access tokens for pushing a container, and remote builder.

To generate a access token, do the following steps:

	Go to: https://cloud.sylabs.io/

	Click “Sign In” and follow the sign in steps.

	Click on your login id (same and updated button as the Sign in
one).

	Select “Access Tokens” from the drop down menu.

	Enter a name for your new access token, such as “test token”

	Click the “Create a New Access Token” button.

	Click “Copy token to Clipboard” from the “New API Token” page.

	Run singularity remote login and paste the access token at the
prompt.

Now that you have your token, you are ready to push your container!

Pushing a Container

The singularity push command will push a container to the container
library with the given URL. Here’s an example of a typical push command:

$ singularity push my-container.sif library://your-name/project-dir/my-container:latest

The :latest is the container tag. Tags are used to have different
version of the same container.

Note

When pushing your container, there’s no need to add a .sif
(Singularity Image Format) to the end of the container name, (like on
your local machine), because all containers on the library are SIF
containers.

Let’s assume you have your container (v1.0.1), and you want to push that
container without deleting your :latest container, then you can add
a version tag to that container, like so:

$ singularity push my-container.sif library://your-name/project-dir/my-container:1.0.1

You can download the container with that tag by replacing the
:latest, with the tagged container you want to download.

To set a description against the container image as you push it, use the
-D flag introduced in SingularityCE 3.7. This provides an alternative
to setting the description via the web interface:

$ singularity push -D "My alpine 3.11 container" alpine_3.11.sif library://myuser/examples/alpine:3.11
2.7MiB / 2.7MiB [===] 100 % 1.1 MiB/s 0s

Library storage: using 13.24 MiB out of 11.00 GiB quota (0.1% used)
Container URL: https://cloud.sylabs.io/library/myuser/examples/alpine

Note that when you push to a library that supports it, SingularityCE 3.7
and above will report your quota usage and the direct URL to view the
container in your web browser.

Pulling a container

The singularity pull command will download a container from the
Library [https://cloud.sylabs.io/library] (library://), Docker
Hub [https://hub.docker.com/] (docker://), and also Shub [https://singularity-hub.org] (shub://).

Note

When pulling from Docker, the container will automatically be
converted to a SIF (Singularity Image Format) container.

Here’s a typical pull command:

$ singularity pull file-out.sif library://alpine:latest

or pull from docker:

$ singularity pull file-out.sif docker://alpine:latest

Note

If there’s no tag after the container name, SingularityCE
automatically will pull the container with the :latest tag.

To pull a container with a specific tag, just add the tag to the library
URL:

$ singularity pull file-out.sif library://alpine:3.8

Of course, you can pull your own containers. Here’s what that will look
like:

Pulling your own container

Pulling your own container is just like pulling from Github, Docker,
etc…

$ singularity pull out-file.sif library://your-name/project-dir/my-container:latest

or use a different tag:

$ singularity pull out-file.sif library://your-name/project-dir/my-container:1.0.1

Note

You don’t have to specify a output file, one will be created
automatically, but it’s good practice to always specify your output
file.

Verify/Sign your Container

Verify containers that you pull from the library, ensuring they are
bit-for-bit reproductions of the original image.

Check out this page on how to: verify a
container, making PGP key, and
sign your own containers.

Searching the Library for Containers

To find interesting or useful containers in the library, you can open
https://cloud.sylabs.io/library in your browser and search from there
through the web GUI.

Alternatively, from the CLI you can use singularity search <query>.
This will search the library for container images matching <query>.

Using the CLI Search

Here is an example of searching the library for centos:

singularity search centos
Found 72 container images for amd64 matching "centos":

 library://dcsouthwick/iotools/centos7:latest

 library://dcsouthwick/iotools/centos7:sha256.48e81523aaad3d74e7af8b154ac5e75f2726cc6cab37f718237d8f89d905ff89
 Minimal centos7 image from yum bootstrap

 library://dtrudg/linux/centos:7,centos7,latest

 library://dtrudg/linux/centos:centos6,6

 library://emmeff/centos/centos:8

 library://essen1999/default/centos-tree:latest

 library://gallig/default/centos_benchmark-signed:7.7.1908
 Signed by: 6B44B0BC9CD273CC6A71DA8CED6FA43EF8771A02

 library://gmk/default/centos7-devel:latest
 Signed by: 7853F08767A4596B3C1AD95E48E1080AB16ED1BC

Containers can have multiple tags, and these are shown separated by
commas after the : in the URL. E.g.
library://dtrudg/linux/centos:7,centos7,latest is a single container
image with 3 tags, 7, centos7, and latest. You can
singularity pull the container image using any one of these tags.

Note that the results show amd64 containers only. By default
search returns only containers with an architecture matching your
current system. To e.g. search for arm64 containers from an
amd64 machine you can use the --arch flag:

singularity search --arch arm64 alpine
Found 5 container images for arm64 matching "alpine":

 library://dtrudg-sylabs-2/multiarch/alpine:latest

 library://geoffroy.vallee/alpine/alpine:latest
 Signed by: 9D56FA7CAFB4A37729751B8A21749D0D6447B268

 library://library/default/alpine:3.11.5,latest,3,3.11

 library://library/default/alpine:3.9,3.9.2

 library://sylabs/tests/passphrase_encrypted_alpine:3.11.5

You can also limit results to only signed containers with the
--signed flag:

singularity search --signed alpine
Found 45 container images for amd64 matching "alpine":

 library://deep/default/alpine:latest,1.0.1
 Signed by: 8883491F4268F173C6E5DC49EDECE4F3F38D871E

 library://godloved/secure/alpine:20200514.0.0
 Signed base image built directly from mirrors suitable for secure building. Make sure to check that the fingerprint is B7761495F83E6BF7686CA5F0C1A7D02200787921
 Signed by: B7761495F83E6BF7686CA5F0C1A7D02200787921

 library://godlovedc/blah/alpine:sha256.63259fd0a2acb88bb652702c08c1460b071df51149ff85dc88db5034532a14a0
 Signed by: 8883491F4268F173C6E5DC49EDECE4F3F38D871E

 library://heffaywrit/base/alpine:latest
 Signed by: D4038BDDE21017435DFE5ADA9F2D10A25D64C1EF

 library://hellseva/class/alpine:latest
 Signed by: 6D60F95E86A593603897164F8E09E44D12A7111C

 library://hpc110/default/alpine-miniconda:cupy
 Signed by: 9FF48D6202271D3C842C53BD0D237BE8BB5B5C76
 ...

Remote Builder

The remote builder service can build your container in the cloud
removing the requirement for root access.

Here’s a typical remote build command:

$ singularity build --remote file-out.sif docker://ubuntu:18.04

Building from a definition file:

This is our definition file. Let’s call it ubuntu.def:

bootstrap: library
from: ubuntu:18.04

%runscript
 echo "hello world from ubuntu container!"

Now, to build the container, use the --remote flag, and without
sudo:

$ singularity build --remote ubuntu.sif ubuntu.def

Note

Make sure you have a access token,
otherwise the build will fail.

After building, you can test your container like so:

$./ubuntu.sif
hello world from ubuntu container!

You can also use the web GUI to build containers remotely. First, go to
https://cloud.sylabs.io/builder (make sure you are signed in). Then you
can copy and paste, upload, or type your definition file. When you are
finished, click build. Then you can download the container with the URL.

Bind Paths and Mounts

Unless disabled by the system administrator [https://singularity-admindoc.readthedocs.io/en/latest/the_singularity_config_file.html#user-bind-control-boolean-default-yes],
SingularityCE allows you to map directories on your host system to
directories within your container using bind mounts. This allows you to
read and write data on the host system with ease.

Overview

When SingularityCE ‘swaps’ the host operating system for the one inside
your container, the host file systems becomes inaccessible. However, you
may want to read and write files on the host system from within the
container. To enable this functionality, SingularityCE will bind
directories back into the container via two primary methods:
system-defined bind paths and user-defined bind paths.

System-defined bind paths

The system administrator has the ability to define what bind paths will
be included automatically inside each container. Some bind paths are
automatically derived (e.g. a user’s home directory) and some are
statically defined (e.g. bind paths in the SingularityCE configuration
file). In the default configuration, the system default bind points are
$HOME , /sys:/sys , /proc:/proc, /tmp:/tmp,
/var/tmp:/var/tmp, /etc/resolv.conf:/etc/resolv.conf,
/etc/passwd:/etc/passwd, and $PWD. Where the first path before
: is the path from the host and the second path is the path in the
container.

Disabling System Binds

The --no-mount flag, added in SingularityCE 3.7, allows specific
system mounts to be disabled, even if they are set in the
singularity.conf configuration file by the administrator.

For example, if SingularityCE has been configured with mount hostfs =
yes then every filesystem on the host will be bind mounted to the
container by default. If, e.g. a /project filesystem on your host
conflicts with a /project directory in the container you are
running, you can disable the hostfs binds:

$ singularity run --no-mount hostfs mycontainer.sif

Multiple mounts can be disabled by specifying them separated by commas:

$ singularity run --no-mount tmp,sys,dev mycontainer.sif

User-defined bind paths

Unless the system administrator has disabled user control of binds [https://singularity-admindoc.readthedocs.io/en/latest/the_singularity_config_file.html#user-bind-control-boolean-default-yes],
you will be able to request your own bind paths within your container.

The SingularityCE action commands (run, exec, shell, and
instance start) will accept the --bind/-B command-line option to
specify bind paths, and will also honor the $SINGULARITY_BIND (or
$SINGULARITY_BINDPATH) environment variable. The argument for this
option is a comma-delimited string of bind path specifications in the
format src[:dest[:opts]], where src and dest are paths
outside and inside of the container respectively. If dest is not
given, it is set equal to src. Mount options (opts) may be
specified as ro (read-only) or rw (read/write, which is the
default). The --bind/-B option can be specified multiple times, or a
comma-delimited string of bind path specifications can be used.

SingularityCE 3.9 adds an additional --mount flag, which provides a
longer-form method of specifying binds in --mount
type=bind,src=<source>,dst=<destination>[,<option>]... format. This is
compatible with the --mount syntax for binds in Docker and other OCI
runtimes.

--bind Examples

Here’s an example of using the --bind option and binding /data
on the host to /mnt in the container (/mnt does not need to
already exist in the container):

$ ls /data
bar foo

$ singularity exec --bind /data:/mnt my_container.sif ls /mnt
bar foo

You can bind multiple directories in a single command with this syntax:

$ singularity shell --bind /opt,/data:/mnt my_container.sif

This will bind /opt on the host to /opt in the container and
/data on the host to /mnt in the container.

Using the environment variable instead of the command line argument,
this would be:

$ export SINGULARITY_BIND="/opt,/data:/mnt"

$ singularity shell my_container.sif

Using the environment variable $SINGULARITY_BIND, you can bind paths
even when you are running your container as an executable file with a
runscript. If you bind many directories into your SingularityCE
containers and they don’t change, you could even benefit by setting this
variable in your .bashrc file.

--mount Examples

The --mount flag takes a mount specification in the format
type=bind,src=<source>,dst=<dest>. Additional options can be
specified, comma delimited.

SingularityCE only supports the bind type for --mount, and will
infer type=bind if it is not provided.

src or source can be used interchangeably. dst,
destination, or target are also equivalent.

To mount data on the host to /mnt inside the container:

$ singularity exec \
 --mount type=bind,src=/data,dst=/mnt \
 my_container.sif ls /mnt
bar foo

To mount the same directory read-only in the container, add the ro
option:

$ singularity exec \
 --mount type=bind,source=/data,dest=/mnt,ro \
 my_container.sif touch /mnt/test
touch: cannot touch '/mnt/test': Permission denied

You can bind multiple directories in a single command with multiple
--mount flags:

$ singularity shell --mount type=bind,src=/opt,dst=/opt \
 --mount type=bind,src=/data,dst=/data \
 my_container.sif

This will bind /opt on the host to /opt in the container and
/data on the host to /mnt in the container.

The mount string can be quoted and escaped according to CSV rules,
wrapping each field in double quotes if necessary characters.
--mount allows bind mounting paths that are not possible with the
--bind flag. For example:

Mount a path containing ':' (not possible with --bind)
$ singularity run \
 --mount type=bind,src=/my:path,dst=/mnt \
 mycontainer.sif

Mount a path containing a ','
$ singularity run \
 --mount type=bind,"src=/comma,dir",dst=/mnt \
 mycontainer.sif

Mount specifications are also read from then environment variable
$SINGULARITY_MOUNT. Multiple bind mounts set via this environment
variable should be separated by newlines (\n).

Using --bind or --mount with the --writable flag

To mount a bind path inside the container, a bind point must be
defined within the container. The bind point is a directory within the
container that SingularityCE can use as a destination to bind a
directory on the host system.

Starting in version 3.0, SingularityCE will do its best to bind mount
requested paths into a container regardless of whether the appropriate
bind point exists within the container. SingularityCE can often carry
out this operation even in the absence of the “overlay fs” feature.

However, binding paths to non-existent points within the container can
result in unexpected behavior when used in conjunction with the
--writable flag, and is therefore disallowed. If you need to specify
bind paths in combination with the --writable flag, please ensure
that the appropriate bind points exist within the container. If they do
not already exist, it will be necessary to modify the container and
create them.

Using --no-home and --containall flags

--no-home

When shelling into your container image, SingularityCE allows you to
mount your current working directory (CWD) without mounting your
host $HOME directory with the --no-home flag.

$ singularity shell --no-home my_container.sif

Note

Beware that if it is the case that your CWD is your $HOME
directory, it will still mount your $HOME directory.

--containall

Using the --containall (or -C for short) flag, $HOME is
not mounted and a dummy bind mount is created at the $HOME point.
You cannot use -B` (or --bind) to bind your $HOME
directory because it creates an empty mount. So if you have files
located in the image at /home/user, the --containall flag
will hide them all.

$ singularity shell --containall my_container.sif

FUSE mounts

Filesystem in Userspace (FUSE) is an interface to allow filesystems to
be mounted using code that runs in userspace, rather than in the Linux
Kernel. Unprivileged (non-root) users can mount filesystems that have
FUSE drivers. For example, the fuse-sshfs package allows you to
mount a remote computer’s filesystem to your local host, over ssh:

$ mount.fuse sshfs#ythel:/home/dave other_host/

Now mounted to my local machine:
$ ythel:/home/dave on /home/dave/other_host type fuse.sshfs (rw,nosuid,nodev,relatime,user_id=1000,group_id=1000)

SingularityCE 3.6 introduces the --fusemount option, which allows
you directly expose FUSE filesystems inside a container. The FUSE
command / driver that mounts a particular type of filesystem can be
located on the host, or in the container.

Note

--fusemount functionality was present in a hidden preview state
from SingularityCE 3.4. The behavior has changed for the final
supported version introduced in SingularityCE 3.6.

Requirements

The FUSE command must be based on libfuse3 3.3.0 or greater to work
correctly with SingularityCE. Older versions do not support the way in
which the SingularityCE runtime passes a pre-mounted file descriptor
into the container.

If you are using an older distribution that provides FUSE commands such
as sshfs based on FUSE 2 then you can install FUSE 3 versions of the
commands you need inside your container. EL7 distributions can install a
compatible version of FUSE 3 from the EPEL repository. EL8 distributions
ship FUSE 3.2.1 as a base package. Unfortunately this is an older version
which does not fully support the way in which SingularityCE prepares FUSE
mounts.

FUSE mount definitions

A fusemount definition for SingularityCE consists of 3 parts:

--fusemount <type>:<fuse command> <container mountpoint>

	type specifies how and where the FUSE mount will be run. The
options are:

	host - use a FUSE command on the host, to mount a
filesystem into the container, with the fuse process attached.

	container - use a FUSE command inside the container, to mount a
filesystem into the container, with the fuse process attached.

	host-daemon - use a FUSE command on the host, to mount a
filesystem into the container, with the fuse process detached.

	container-daemon - use a FUSE command inside the container, to
mount a filesystem into the container, with the fuse process
detached.

	fuse command specifies the name of the executable that implements
the FUSE mount, and any arguments. E.g. sshfs server:over-there/
for mounting a remote filesystem over SSH, where the remote source is
over-there/ in my home directory on the machine called
server.

	container mountpoint is an absolute path at which the FUSE
filesystem will be mounted in the container.

FUSE mount with a host executable

To use a FUSE sshfs mount in a container, where the fuse-sshfs
package has been installed on my host, I run with the host mount
type:

$ singularity run --fusemount "host:sshfs server:/ /server" docker://ubuntu
Singularity> cat /etc/hostname
localhost.localdomain
Singularity> cat /server/etc/hostname
server

FUSE mount with a container executable

If the FUSE driver / command that you want to use for the mount has been
added to your container, you can use the container mount type:

$ singularity run --fusemount "container:sshfs server:/ /server" sshfs.sif
Singularity> cat /etc/hostname
localhost.localdomain
Singularity> cat /server/etc/hostname
server

Image Mounts

In SingularityCE 3.6 and above you can mount a directory contained in an
image file into a container. This may be useful if you want to
distribute directories containing a large number of data files as a
single image file.

You can mount from image files in ext3 format, squashfs format, or SIF
format.

The ext3 image file format allows you to mount it into the container
read/write and make changes, while the other formats are read-only. Note
that you can only use a read/write image in a single container. You
cannot mount it to multiple container runs at the same time.

To mount a directory from an image file, use the -B/--bind option
and specify the bind in the format:

-B <image-file>:<dest>:image-src=<source>

Alternatively use the --mount option, and specify the bind in the
format:

--mount type=bind,src=<image-file>,dst=<dest>,image-src=<source>

This will bind the <source> path inside <image-file> to
<dest> in the container.

If you do not add :image-src=<source> to your bind specification,
then the <image-file> itself will be bound to <dest> instead.

Ext3 Image Files

If you have a directory called inputs/ that holds data files you
wish to distribute in an image file that allows read/write:

Create an image file 'inputs.img' of size 100MB and put the
files inputs/ into it's root directory
$ mkfs.ext3 -d inputs/ inputs.img 100M
mke2fs 1.45.6 (20-Mar-2020)
Creating regular file inputs.img
Creating filesystem with 102400 1k blocks and 25688 inodes
Filesystem UUID: e23c29c9-7a49-4b82-89bf-2faf36b5a781
Superblock backups stored on blocks:
 8193, 24577, 40961, 57345, 73729

Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Copying files into the device: done
Writing superblocks and filesystem accounting information: done

Run SingularityCE, mounting my input data to '/input-data' in
the container.
$ singularity run -B inputs.img:/input-data:image-src=/ mycontainer.sif
Singularity> ls /input-data
1 3 5 7 9
2 4 6 8 lost+found

Or with --mount instead of -B
$ singularity run \
 --mount type=bind,src=inputs.img,dst=/input-data,image-src=/ \
 mycontainer.sif

SquashFS Image Files

If you have a directory called inputs/ that holds data files you
wish to distribute in an image file that is read-only, and compressed,
then the squashfs format is appropriate:

Create an image file 'inputs.squashfs' and put the files from
inputs/ into it's root directory
$ mksquashfs inputs/ inputs.squashfs
Parallel mksquashfs: Using 16 processors
Creating 4.0 filesystem on inputs.squashfs, block size 131072.
...

Run SingularityCE, mounting my input data to '/input-data' in
the container.
$ singularity run -B inputs.squashfs:/input-data:image-src=/ mycontainer.sif
Singularity> ls /input-data/
1 2 3 4 5 6 7 8 9

Or with --mount instead of -B
$ singularity run \
 --mount type=bind,src=src-inputs.squashfs,dst=/input-data,image-src=/ \
 mycontainer.sif

SIF Image Files

Advanced users may wish to create a standalone SIF image, which contains
an ext3 or squashfs data partition holding files, by using the
singularity sif commands similarly to the persistent overlays
instructions:

Create a new empty SIF file
$ singularity sif new inputs.sif

Add the squashfs data image from above to the SIF
$ singularity sif add --datatype 4 --partarch 2 --partfs 1 --parttype 3 inputs.sif inputs.squashfs

Run SingularityCE, binding data from the SIF file
$ singularity run -B inputs.sif:/input-data:image-src=/ mycontainer.sif
Singularity> ls /input-data
1 2 3 4 5 6 7 8 9

Or with --mount instead of -B
$ singularity run \
 --mount type=bind,src=inputs.sif,dst=/input-data,image-src=/ \
 mycontainer.sif

If your bind source is a SIF then SingularityCE will bind from the first
data partition in the SIF, or you may specify an alternative descriptor
by ID with the additional option id=n, where n is the descriptor ID.

Persistent Overlays

Persistent overlay directories allow you to overlay a writable file
system on an immutable read-only container for the illusion of
read-write access. You can run a container and make changes, and these
changes are kept separately from the base container image.

Overview

A persistent overlay is a directory or file system image that “sits on
top” of your immutable SIF container. When you install new software or
create and modify files the overlay will store the changes.

If you want to use a SIF container as though it were writable, you can
create a directory, an ext3 file system image, or embed an ext3 file
system image in SIF to use as a persistent overlay. Then you can specify
that you want to use the directory or image as an overlay at runtime
with the --overlay option, or --writable if you want to use the
overlay embedded in SIF.

If you want to make changes to the image, but do not want them to
persist, use the --writable-tmpfs option. This stores all changes in
an in-memory temporary filesystem which is discarded as soon as the
container finishes executing.

You can use persistent overlays with the following commands:

	run

	exec

	shell

	instance.start

Usage

To use a persistent overlay, you must first have a container.

$ sudo singularity build ubuntu.sif library://ubuntu

File system image overlay

Since 3.8, SingularityCE provides a command singularity overlay
create to create persistent overlay images. You can create a single
EXT3 overlay image or adding a EXT3 writable overlay partition to an
existing SIF image.

Note

dd and mkfs.ext3 must be installed on your system.
Additionally mkfs.ext3 must support -d option in order to
create an overlay directory tree usable by a regular user.

For example, to create a 1 GiB overlay image:

$ singularity overlay create --size 1024 /tmp/ext3_overlay.img

To add a 1 GiB writable overlay partition to an existing SIF image:

$ singularity overlay create --size 1024 ubuntu.sif

Warning

It is not possible to add a writable overlay partition to a
signed, encrypted SIF image or if the SIF image already
contain a writable overlay partition.

singularity overlay create also provides an option --create-dir
to create additional directories owned by the calling user, it can be
specified multiple times to create many directories. This is
particularly useful when you need to make a directory writable by your
user.

So for example:

$ singularity build /tmp/nginx.sif docker://nginx
$ singularity overlay create --size 1024 --create-dir /var/cache/nginx /tmp/nginx.sif
$ echo "test" | singularity exec /tmp/nginx.sif sh -c "cat > /var/cache/nginx/test"

Create an overlay image (< 3.8)

You can use tools like dd and mkfs.ext3 to create and format an
empty ext3 file system image, which holds all changes made in your
container within a single file. Using an overlay image file makes it
easy to transport your modifications as a single additional file
alongside the original SIF container image.

Workloads that write a very large number of small files into an overlay
image, rather than a directory, are also faster on HPC parallel
filesystems. Each write is a local operation within the single open
image file, and does not cause additional metadata operations on the
parallel filesystem.

To create an overlay image file with 500MBs of empty space:

$ dd if=/dev/zero of=overlay.img bs=1M count=500 && \
 mkfs.ext3 overlay.img

Now you can use this overlay with your container, though filesystem
permissions still control where you can write, so sudo is needed to
run the container as root if you need to write to / inside the
container.

$ sudo singularity shell --overlay overlay.img ubuntu.sif

To manage permissions in the overlay, so the container is writable by
unprivileged users you can create a directory structure on your host,
set permissions on it as needed, and include it in the overlay with the
-d option to mkfs.ext3:

$ mkdir -p overlay/upper overlay/work
$ dd if=/dev/zero of=overlay.img bs=1M count=500 && \
 mkfs.ext3 -d overlay overlay.img

Now the container will be writable as the unprivileged user who created
the overlay/upper and overlay/work directories that were placed
into overlay.img.

$ singularity shell --overlay overlay.img ubuntu.sif
Singularity> echo $USER
dtrudg
Singularity> echo "Hello" > /hello

Note

The -d option to mkfs.ext3 does not support uid or
gid values >65535. To allow writes from users with larger uids
you can create the directories for your overlay with open
permissions, e.g. mkdir -p -m 777 overlay/upper overlay/work. At
runtime files and directories created in the overlay will have the
correct uid and gid, but it is not possible to lock down
permissions so that the overlay is only writable by certain users.

Directory overlay

A directory overlay is simpler to use than a filesystem image overlay,
but a directory of modifications to a base container image cannot be
transported or shared as easily as a single overlay file.

Note

For security reasons, you must be root to use a bare directory as an
overlay. ext3 file system images can be used as overlays without root
privileges.

Create a directory as usual:

$ mkdir my_overlay

The example below shows the directory overlay in action.

$ sudo singularity shell --overlay my_overlay/ ubuntu.sif

SingularityCE ubuntu.sif:~> mkdir /data

SingularityCE ubuntu.sif:~> chown user /data

SingularityCE ubuntu.sif:~> apt-get update && apt-get install -y vim

SingularityCE ubuntu.sif:~> which vim
/usr/bin/vim

SingularityCE ubuntu.sif:~> exit

Overlay embedded in SIF

It is possible to embed an overlay image in the SIF file that holds a
container. This allows the read-only container image and your
modifications to it to be managed as a single file. In order to do this,
you must first create a file system image:

$ dd if=/dev/zero of=overlay.img bs=1M count=500 && \
 mkfs.ext3 overlay.img

Then, you can add the overlay to the SIF image using the sif
functionality of SingularityCE.

$ singularity sif add --datatype 4 --partfs 2 --parttype 4 --partarch 2 --groupid 1 ubuntu_latest.sif overlay.img

Below is the explanation what each parameter means, and how it can
possibly affect the operation:

	datatype determines what kind of an object we attach, e.g. a
definition file, environment variable, signature.

	partfs should be set according to the partition type, e.g.
SquashFS, ext3, raw.

	parttype determines the type of partition. In our case it is
being set to overlay.

	partarch must be set to the architecture against you’re building.
In this case it’s amd64.

	groupid is the ID of the container image group. In most cases
there’s no more than one group, therefore we can assume it is 1.

All of these options are documented within the CLI help. Access it by
running singularity sif add --help.

After you’ve completed the steps above, you can shell into your
container with the --writable option.

$ sudo singularity shell --writable ubuntu_latest.sif

Final note

You will find that your changes persist across sessions as though you
were using a writable container.

$ singularity shell --overlay my_overlay/ ubuntu.sif

SingularityCE ubuntu.sif:~> ls -lasd /data
4 drwxr-xr-x 2 user root 4096 Apr 9 10:21 /data

SingularityCE ubuntu.sif:~> which vim
/usr/bin/vim

SingularityCE ubuntu.sif:~> exit

If you mount your container without the --overlay directory, your
changes will be gone.

$ singularity shell ubuntu.sif

SingularityCE ubuntu.sif:~> ls /data
ls: cannot access 'data': No such file or directory

SingularityCE ubuntu.sif:~> which vim

SingularityCE ubuntu.sif:~> exit

To resize an overlay, standard Linux tools which manipulate ext3 images
can be used. For instance, to resize the 500MB file created above to
700MB one could use the e2fsck and resize2fs utilities like so:

$ e2fsck -f my_overlay && \
 resize2fs my_overlay 700M

Hints for creating and manipulating ext3 images on your distribution are
readily available online and are not treated further in this manual.

Running Services

There are different ways in which you can run
SingularityCE containers. If you use commands like run, exec and
shell to interact with processes in the container, you are running
SingularityCE containers in the foreground. SingularityCE, also lets you
run containers in a “detached” or “daemon” mode which can run different
services in the background. A “service” is essentially a process running
in the background that multiple different clients can use. For example,
a web server or a database. To run services in a SingularityCE container
one should use instances. A container instance is a persistent and
isolated version of the container image that runs in the background.

Overview

SingularityCE v2.4 introduced the concept of instances allowing users
to run services in SingularityCE. This page will help you understand
instances using an elementary example followed by a more useful example
running an NGINX web server using instances. In the end, you will find a
more detailed example of running an instance of an API that converts URL
to PDFs.

To begin with, suppose you want to run an NGINX web server outside of a
container. On Ubuntu, you can simply install NGINX and start the service
by:

$ sudo apt-get update && sudo apt-get install -y nginx

$ sudo service nginx start

If you were to do something like this from within a container you would
also see the service start, and the web server running. But then if you
were to exit the container, the process would continue to run within an
unreachable mount namespace. The process would still be running, but you
couldn’t easily kill or interface with it. This is a called an orphan
process. SingularityCE instances give you the ability to handle services
properly.

Container Instances in SingularityCE

For demonstration, let’s use an easy (though somewhat useless) example
of alpine_latest.sif [https://cloud.sylabs.io/library/_container/5baba5e594feb900016ea41c]
image from the container library [https://cloud.sylabs.io/library/]:

$ singularity pull library://alpine

The above command will save the alpine image from the Container Library
as alpine_latest.sif.

To start an instance, you should follow this procedure :

[command] [image] [name of instance]

$ singularity instance start alpine_latest.sif instance1

This command causes SingularityCE to create an isolated environment for
the container services to live inside. One can confirm that an instance
is running by using the instance list command like so:

$ singularity instance list

INSTANCE NAME PID IP IMAGE
instance1 22084 /home/dave/instances/alpine_latest.sif

Note

The instances are linked with your user account. So make sure to run
all instance commands either with or without the sudo
privilege. If you start an instance with sudo then you must
list it with sudo as well, or you will not be able to locate the
instance.

If you want to run multiple instances from the same image, it’s as
simple as running the command multiple times with different instance
names. The instance name uniquely identify instances, so they cannot be
repeated.

$ singularity instance start alpine_latest.sif instance2

$ singularity instance start alpine_latest.sif instance3

And again to confirm that the instances are running as we expected:

$ singularity instance list

INSTANCE NAME PID IP IMAGE
instance1 22084 /home/dave/instances/alpine_latest.sif
instance2 22443 /home/dave/instances/alpine_latest.sif
instance3 22493 /home/dave/instances/alpine_latest.sif

You can also filter the instance list by supplying a pattern:

$ singularity instance list '*2'

INSTANCE NAME PID IP IMAGE
instance2 22443 /home/dave/instances/alpine_latest.s

You can use the singularity run/exec commands on instances:

$ singularity run instance://instance1

$ singularity exec instance://instance2 cat /etc/os-release

When using run with an instance URI, the runscript will be
executed inside of the instance. Similarly with exec, it will
execute the given command in the instance.

If you want to poke around inside of your instance, you can do a normal
singularity shell command, but give it the instance URI:

$ singularity shell instance://instance3

Singularity>

When you are finished with your instance you can clean it up with the
instance stop command as follows:

$ singularity instance stop instance1

If you have multiple instances running and you want to stop all of them,
you can do so with a wildcard or the –all flag. The following three
commands are all identical.

$ singularity instance stop *

$ singularity instance stop --all

$ singularity instance stop -a

Note

Note that you must escape the wildcard with a backslash like this
* to pass it properly.

Nginx “Hello-world” in SingularityCE

The above example, although not very useful, should serve as a fair
introduction to the concept of SingularityCE instances and running
services in the background. The following illustrates a more useful
example of setting up a sample NGINX web server using instances. First
we will create a basic definition file (let’s
call it nginx.def):

Bootstrap: docker
From: nginx
Includecmd: no

%startscript
 nginx

This downloads the official NGINX Docker container, converts it to a
SingularityCE image, and tells it to run NGINX when you start the
instance. Since we’re running a web server, we’re going to run the
following commands as root.

$ sudo singularity build nginx.sif nginx.def

$ sudo singularity instance start --writable-tmpfs nginx.sif web

Note

The above start command requires sudo because we are running
a web server. Also, to let the instance write temporary files during
execution, you should use --writable-tmpfs while starting the
instance.

Just like that we’ve downloaded, built, and run an NGINX SingularityCE
image. And to confirm that it’s correctly running:

$ curl localhost

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Visit localhost on your browser, you should see a Welcome message!

Putting all together

In this section, we will demonstrate an example of packaging a service
into a container and running it. The service we will be packaging is an
API server that converts a web page into a PDF, and can be found here [https://github.com/alvarcarto/url-to-pdf-api]. You can build the
image by following the steps described below or you can just download
the final image directly from Container Library, simply run:

$ singularity pull url-to-pdf.sif library://sylabs/doc-examples/url-to-pdf:latest

Building the image

This section will describe the requirements for creating the definition
file (url-to-pdf.def) that will be used to build the container image.
url-to-pdf-api is based on a Node 8 server that uses a headless
version of Chromium called Puppeteer [https://github.com/GoogleChrome/puppeteer]. Let’s first choose a base
from which to build our container, in this case the docker image
node:8 which comes pre-installed with Node 8 has been used:

Bootstrap: docker
From: node:8
Includecmd: no

Puppeteer also requires a slew of dependencies to be manually installed
in addition to Node 8, so we can add those into the post section as
well as the installation script for the url-to-pdf:

%post

 apt-get update && apt-get install -yq gconf-service libasound2 \
 libatk1.0-0 libc6 libcairo2 libcups2 libdbus-1-3 libexpat1 \
 libfontconfig1 libgcc1 libgconf-2-4 libgdk-pixbuf2.0-0 \
 libglib2.0-0 libgtk-3-0 libnspr4 libpango-1.0-0 \
 libpangocairo-1.0-0 libstdc++6 libx11-6 libx11-xcb1 libxcb1 \
 libxcomposite1 libxcursor1 libxdamage1 libxext6 libxfixes3 libxi6 \
 libxrandr2 libxrender1 libxss1 libxtst6 ca-certificates \
 fonts-liberation libappindicator1 libnss3 lsb-release xdg-utils \
 wget curl && rm -r /var/lib/apt/lists/*
 git clone https://github.com/alvarcarto/url-to-pdf-api.git pdf_server
 cd pdf_server
 npm install
 chmod -R 0755 .

And now we need to define what happens when we start an instance of the
container. In this situation, we want to run the commands that starts up
the url-to-pdf service:

%startscript
 cd /pdf_server
 # Use nohup and /dev/null to completely detach server process from terminal
 nohup npm start > /dev/null 2>&1 < /dev/null &

Also, the url-to-pdf service requires some environment variables to
be set, which we can do in the environment section:

%environment
 NODE_ENV=development
 PORT=9000
 ALLOW_HTTP=true
 URL=localhost
 export NODE_ENV PORT ALLOW_HTTP URL

The complete definition file will look like this:

Bootstrap: docker
From: node:8
Includecmd: no

%post

 apt-get update && apt-get install -yq gconf-service libasound2 \
 libatk1.0-0 libc6 libcairo2 libcups2 libdbus-1-3 libexpat1 \
 libfontconfig1 libgcc1 libgconf-2-4 libgdk-pixbuf2.0-0 \
 libglib2.0-0 libgtk-3-0 libnspr4 libpango-1.0-0 \
 libpangocairo-1.0-0 libstdc++6 libx11-6 libx11-xcb1 libxcb1 \
 libxcomposite1 libxcursor1 libxdamage1 libxext6 libxfixes3 libxi6 \
 libxrandr2 libxrender1 libxss1 libxtst6 ca-certificates \
 fonts-liberation libappindicator1 libnss3 lsb-release xdg-utils \
 wget curl && rm -r /var/lib/apt/lists/*
 git clone https://github.com/alvarcarto/url-to-pdf-api.git pdf_server
 cd pdf_server
 npm install
 chmod -R 0755 .

%startscript
 cd /pdf_server
 # Use nohup and /dev/null to completely detach server process from terminal
 nohup npm start > /dev/null 2>&1 < /dev/null &

%environment
 NODE_ENV=development
 PORT=9000
 ALLOW_HTTP=true
 URL=localhost
 export NODE_ENV PORT ALLOW_HTTP URL

The container can be built like so:

$ sudo singularity build url-to-pdf.sif url-to-pdf.def

Running the Service

We can now start an instance and run the service:

$ sudo singularity instance start url-to-pdf.sif pdf

Note

If there occurs an error related to port connection being refused
while starting the instance or while using it later, you can try
specifying different port numbers in the %environment section of
the definition file above.

We can confirm it’s working by sending the server an http request using
curl:

$ curl -o sylabs.pdf localhost:9000/api/render?url=http://sylabs.io/docs

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

100 73750 100 73750 0 0 14583 0 0:00:05 0:00:05 --:--:-- 19130

You should see a PDF file being generated like the one shown below:

[image: Screenshot of the PDF generated!]
If you shell into the instance, you can see the running processes:

$ sudo singularity shell instance://pdf
SingularityCE: Invoking an interactive shell within container...

SingularityCE final.sif:/home/ysub> ps auxf
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 461 0.0 0.0 18204 3188 pts/1 S 17:58 0:00 /bin/bash --norc
root 468 0.0 0.0 36640 2880 pts/1 R+ 17:59 0:00 _ ps auxf
root 1 0.0 0.1 565392 12144 ? Sl 15:10 0:00 sinit
root 16 0.0 0.4 1113904 39492 ? Sl 15:10 0:00 npm
root 26 0.0 0.0 4296 752 ? S 15:10 0:00 _ sh -c nodemon --watch ./src -e js src/index.js
root 27 0.0 0.5 1179476 40312 ? Sl 15:10 0:00 _ node /pdf_server/node_modules/.bin/nodemon --watch ./src -e js src/index.js
root 39 0.0 0.7 936444 61220 ? Sl 15:10 0:02 _ /usr/local/bin/node src/index.js

SingularityCE final.sif:/home/ysub> exit

Making it Fancy

Now that we have confirmation that the server is working, let’s make it
a little cleaner. It’s difficult to remember the exact curl command
and URL syntax each time you want to request a PDF, so let’s automate
it. Instead of creating completely separate containers for the server
and our streamlined client, it’d be nice to have them both available in
the same SIF file. To do that, we can use Scientific Filesystem (SCIF)
apps.

Note

SCIF is a standard for encapsulating multiple apps into a container.
A container with SCIF apps has multiple entry points, and you can
choose which to run easily. Each entry point can carry out a
different task with it’s own environment, metadata etc., without the
need for a collection of different containers.

SingularityCE implements SCIF, and you can read more about how to use
it apps.

SCIF is not specific to SingularityCE. You can learn more about it at
the project site: <https://sci-f.github.io/>`_.

First off, we’re going to move the installation of the url-to-pdf into
an app, so that there is a designated spot to place output files. To do
that, we want to add a section to our definition file to build the
server:

%appinstall pdf_server
 git clone https://github.com/alvarcarto/url-to-pdf-api.git pdf_server
 cd pdf_server
 npm install
 chmod -R 0755 .

And update our startscript to point to the app location:

%startscript
 cd /scif/apps/pdf_server/scif/pdf_server
 # Use nohup and /dev/null to completely detach server process from terminal
 nohup npm start > /dev/null 2>&1 < /dev/null &

Now we want to define the pdf_client app, which we will run to send the
requests to the server:

%apprun pdf_client
 if [-z "${1:-}"]; then
 echo "Usage: singularity run --app pdf <instance://name> <URL> [output file]"
 exit 1
 fi
 curl -o "${SINGULARITY_APPDATA}/output/${2:-output.pdf}" "${URL}:${PORT}/api/render?url=${1}"

As you can see, the pdf_client app checks to make sure that the user
provides at least one argument.

The full def file will look like this:

Bootstrap: docker
From: node:8
Includecmd: no

%post

 apt-get update && apt-get install -yq gconf-service libasound2 \
 libatk1.0-0 libc6 libcairo2 libcups2 libdbus-1-3 libexpat1 \
 libfontconfig1 libgcc1 libgconf-2-4 libgdk-pixbuf2.0-0 \
 libglib2.0-0 libgtk-3-0 libnspr4 libpango-1.0-0 \
 libpangocairo-1.0-0 libstdc++6 libx11-6 libx11-xcb1 libxcb1 \
 libxcomposite1 libxcursor1 libxdamage1 libxext6 libxfixes3 libxi6 \
 libxrandr2 libxrender1 libxss1 libxtst6 ca-certificates \
 fonts-liberation libappindicator1 libnss3 lsb-release xdg-utils \
 wget curl && rm -r /var/lib/apt/lists/*

%appinstall pdf_server
 git clone https://github.com/alvarcarto/url-to-pdf-api.git pdf_server
 cd pdf_server
 npm install
 chmod -R 0755 .

%startscript
 cd /scif/apps/pdf_server/scif/pdf_server
 # Use nohup and /dev/null to completely detach server process from terminal
 nohup npm start > /dev/null 2>&1 < /dev/null &

%environment
 NODE_ENV=development
 PORT=9000
 ALLOW_HTTP=true
 URL=localhost
 export NODE_ENV PORT ALLOW_HTTP URL

%apprun pdf_client
 if [-z "${1:-}"]; then
 echo "Usage: singularity run --app pdf <instance://name> <URL> [output file]"
 exit 1
 fi
 curl -o "${SINGULARITY_APPDATA}/output/${2:-output.pdf}" "${URL}:${PORT}/api/render?url=${1}"

Create the container as before. The --force option will overwrite
the old container:

$ sudo singularity build --force url-to-pdf.sif url-to-pdf.def

Now that we have an output directory in the container, we need to expose
it to the host using a bind mount. Once we’ve rebuilt the container,
make a new directory called /tmp/out for the generated PDFs to go.

$ mkdir /tmp/out

After building the image from the edited definition file we simply start
the instance:

$ singularity instance start --bind /tmp/out/:/output url-to-pdf.sif pdf

To request a pdf simply do:

$ singularity run --app pdf_client instance://pdf http://sylabs.io/docs sylabs.pdf

To confirm that it worked:

$ ls /tmp/out/
sylabs.pdf

When you are finished, use the instance stop command to close all
running instances.

$ singularity instance stop --all

Note

If the service you want to run in your instance requires a bind
mount, then you must pass the --bind option when calling
instance start. For example, if you wish to capture the output of
the web container instance which is placed at /output/ inside
the container you could do:

$ singularity instance start --bind output/dir/outside/:/output/ nginx.sif web

System integration / PID files

If you are running services in containers you may want them to be
started on boot, and shutdown gracefully automatically. This is usually
performed by an init process, or another supervisor daemon installed on
your host. Many init and supervisor daemons support managing processes
via pid files.

You can specify a –pid-file option to singularity instance start to
write the PID for an instance to the specified file, e.g.

$ singularity instance start --pid-file /home/dave/alpine.pid alpine_latest.sif instanceA

$ cat /home/dave/alpine.pid
23727

An example service file for an instance controlled by systemd is below.
This can be used as a template to setup containerized services under
systemd.

[Unit]
Description=Web Instance
After=network.target

[Service]
Type=forking
Restart=always
User=www-data
Group=www-data
PIDFile=/run/web-instance.pid
ExecStart=/usr/local/bin/singularity instance start --pid-file /run/web-instance.pid /data/containers/web.sif web-instance
ExecStop=/usr/local/bin/singularity instance stop web-instance

[Install]
WantedBy=multi-user.target

Note that Type=forking is required here, since instance start
starts an instance and then exits.

Environment and Metadata

Environment variables are values you can set in a session, which can be
used to influence the behavior of programs. It’s often considered best
practice to use environment variables to pass settings to a program in a
container, because they are easily set and don’t rely on writing and
binding in program-specific configuration files. When building a
container you may need to set fixed or default environment variables.
When running containers you may need to set or override environment
variables.

The metadata of a container is information that
describes the container. SingularityCE automatically records important
information such as the definition file used to build a container. Other
details such as the version of SingularityCE used are present as
labels on a container. You can also specify your own
to be recorded against your container.

Environment Overview

When you run a program in a container with SingularityCE, the
environment variables that the program sees are a combination of:

	The environment variables set in the base image (e.g. Docker
image) used to build the container.

	The environment variables set in the %environment section of
the definition file used to build the container.

	Most of the environment variables set on your host, which are
passed into the container.

	Any variables you set specifically for the container at runtime,
using the --env, --env-file options, or by setting
SINGULARITYENV_ variables outside of the container.

	The PATH variable can be manipulated to add entries.

	Runtime variables SINGULARITY_xxx set by SingularityCE to
provide information about the container.

The environment variables from the base image or definition file used to
build a container always apply, but can be overridden.

You can choose to exclude passing environment variables from the host
into the container with the -e or --cleanenv option.

We’ll go through each place environment variables can be defined, so
that you can understand how the final environment in a container is
created, and can be manipulated.

If you are interested in variables available when you are building a
container, rather than when running a container, see build
environment section.

Environment From a Base Image

When you build a container with SingularityCE you might bootstrap from
a library or Docker image, or using Linux distribution bootstrap tools
such as debootstrap, yum etc.

When using debootstrap, yum etc. you are starting from a fresh
install of a Linux distribution into your container. No specific
environment variables will be set. If you are using a library or
Docker source then you may inherit environment variables from your
base image.

If I build a singularity container from the image
docker://python:3.7 then when I run the container I can see that the
PYTHON_VERSION variable is set in the container:

$ singularity exec python.sif env | grep PYTHON_VERSION
PYTHON_VERSION=3.7.7

This happens because the Dockerfile used to build that container has
ENV PYTHON_VERSION 3.7.7 set inside it.

You can override the inherited environment with SINGULARITYENV_ vars, or the
--env / --env-file flags (see below), but Dockerfile ENV vars will
not be overridden by host environment variables of the same name.

Environment From a Definition File

Environment variables can be included in your container by adding them
to your definition file. Use export in the %environment section
of a definition file to set a container environment variable:

Bootstrap: library
From: default/alpine

%environment
 export MYVAR="Hello"

%runscript
 echo $MYVAR

Now the value of MYVAR is Hello when the container is launched.
The %runscript is set to echo the value.

$ singularity run env.sif
Hello

Warning

SingularityCE 3.6 uses an embedded shell interpreter to evaluate and
setup container environments, therefore all commands executed from
the %environment section have an execution timeout of 5
seconds for SingularityCE 3.6 and a 1 minute timeout since
SingularityCE 3.7. While it is possible to source a script from there, it
is not recommended to use this section to run potentially long
initialization tasks because this would impact users running the
image and the execution could abort due to timeout.

Build Time Variables in %post

In some circumstances the value that needs to be assigned to an
environment variable may only be known after e.g. software
installation, in %post. For situations like this, the
$SINGULARITY_ENVIRONMENT variable is provided. Redirecting text to
this variable will cause it to be written to a file called
/.singularity.d/env/91-environment.sh that will be sourced at
runtime.

Variables set in the %post section through
$SINGULARITY_ENVIRONMENT take precedence over those added via
%environment.

Environment From the Host

If you have environment variables set outside of your container, on the
host, then by default they will be available inside the container.
Except that:

	An environment variable set on the host will be overridden by a variable
of the same name that has been set either inside the container image, or
via SINGULARITYENV_ environment variables, or the --env and
--env-file flags.

	The PS1 shell prompt is reset for a container specific prompt.

	The PATH environment variable will be modified to contain
default values.

	The LD_LIBRARY_PATH is modified to a default
/.singularity.d/libs, that will include NVIDIA / ROCm
libraries if applicable.

To override an environment variable that is already set in the container with
the value from the host, use SINGULARITY_ENV or the --env flag. For
example, to force MYVAR in the container to take the value of MYVAR on
the host:

$ export SINGULARITYENV_MYVAR="$MYVAR"
$ singularity run mycontainer.sif

or
$ singularity run --env "MYVAR=$MYVAR"

If you do not want the host environment variables to pass into the
container you can use the -e or --cleanenv option. This gives a
clean environment inside the container, with a minimal set of
environment variables for correct operation of most software.

$ singularity exec --cleanenv env.sif env
HOME=/home/dave
LANG=C
LD_LIBRARY_PATH=/.singularity.d/libs
PATH=/startpath:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
PROMPT_COMMAND=PS1="Singularity> "; unset PROMPT_COMMAND
PS1=Singularity>
PWD=/home/dave/doc-tesrts
SINGULARITY_COMMAND=exec
SINGULARITY_CONTAINER=/home/dave/doc-tesrts/env.sif
SINGULARITY_ENVIRONMENT=/.singularity.d/env/91-environment.sh
SINGULARITY_NAME=env.sif
TERM=xterm-256color

Warning

If you work on a host system that sets a lot of environment
variables, e.g. because you use software made available through
environment modules / lmod, you may see strange behavior in your
container. Check your host environment with env for variables
such as PYTHONPATH that can change the way code runs, and
consider using --cleanenv.

Environment From the SingularityCE Runtime

It can be useful for a program to know when it is running in a
SingularityCE container, and some basic information about the container
environment. SingularityCE will automatically set a number of
environment variables in a container that can be inspected by any
program running in the container.

	SINGULARITY_COMMAND - how the container was started, e.g.
exec / run / shell.

	SINGULARITY_CONTAINER - the full path to the container image.

	SINGULARITY_ENVIRONMENT - path inside the container to the
shell script holding the container image environment settings.

	SINGULARITY_NAME - name of the container image, e.g.
myfile.sif or docker://ubuntu.

	SINGULARITY_BIND - a list of bind paths that the user
requested, via flags or environment variables, when running the
container.

Overriding Environment Variables

You can override variables that have been set in the container image, or
define additional variables, in various ways as appropriate for your
workflow.

--env option

The --env option on the run/exec/shell commands allows you to
specify environment variables as NAME=VALUE pairs:

$ singularity run env.sif
Hello

$ singularity run --env MYVAR=Goodbye env.sif
Goodbye

Separate multiple variables with commas, e.g. --env
MYVAR=A,MYVAR2=B, and use shell quoting / shell escape if your
variables include special characters.

--env-file option

The --env-file option lets you provide a file that contains
environment variables as NAME=VALUE pairs, e.g.:

$ cat myenvs
MYVAR="Hello from a file"

$ singularity run --env-file myenvs env.sif
Hello from a file

SINGULARITYENV_ prefix

If you export an environment variable on your host called
SINGULARITYENV_xxx before you run a container, then it will set
the environment variable xxx inside the container:

$ singularity run env.sif
Hello

$ export SINGULARITYENV_MYVAR="Overridden"
$ singularity run env.sif
Overridden

Manipulating PATH

PATH is a special environment variable that tells a system where to
look for programs that can be run. PATH contains multiple filesystem
locations (paths) separated by colons. When you ask to run a program
myprog, the system looks through these locations one by one, until
it finds myprog.

To ensure containers work correctly, when a host PATH might contain
a lot of host-specific locations that are not present in the container,
SingularityCE will ensure PATH in the container is set to a default.

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

This covers the standard locations for software installed using a system
package manager in most Linux distributions. If you have software
installed elsewhere in the container, then you can override this by
setting PATH in the container definition %environment block.

If your container depends on things that are bind mounted into it, or
you have another need to modify the PATH variable when starting a
container, you can do so with SINGULARITYENV_APPEND_PATH or
SINGULARITYENV_PREPEND_PATH.

If you set a variable on your host called SINGULARITYENV_APPEND_PATH
then its value will be appended (added to the end) of the PATH
variable in the container.

$ singularity exec env.sif sh -c 'echo $PATH'
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

$ export SINGULARITYENV_APPEND_PATH="/endpath"
$ singularity exec env.sif sh -c 'echo $PATH'
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/endpath

Alternatively you could use the --env option to set a
APPEND_PATH variable, e.g. --env APPEND_PATH=/endpath.

If you set a variable on your host called
SINGULARITYENV_PREPEND_PATH then its value will be prepended (added
to the start) of the PATH variable in the container.

$ singularity exec env.sif sh -c 'echo $PATH'
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

$ export SINGULARITYENV_PREPEND_PATH="/startpath"
$ singularity exec env.sif sh -c 'echo $PATH'
/startpath:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Alternatively you could use the --env option to set a
PREPEND_PATH variable, e.g. --env PREPEND_PATH=/startpath.

Escaping and Evaluation of Environment Variables

SingularityCE uses an embedded shell interpreter to process the container
startup scripts and environment. When this processing is performed, by default a
single step of shell evaluation happens in the container context. The shell from
which you are running SingularityCE may also evaluate variables on your command
line before passing them to SingularityCE.

Docker / OCI Compatibility

This default behavior of SingularityCE differs from Docker/OCI handling of
environment variables / ENV directives. To avoid the extra evaluation of
variables that SingularityCE performs you can:

	Follow the instructions about escaping in the sections below, to add
additional escape characters and/or quoting.

	Use the --no-eval or --compat flags.

--no-eval prevents SingularityCE from evaluating environment variables on
container startup, so that they will take the same value as with a Docker/OCI
runtime:

Set an environment variable that would run `date` if evaluated
$ export SINGULARITYENV_MYVAR='$(date)'

Default behavior
MYVAR was evaluated in the container, and is set to the output of `date`
$ singularity run ~/ubuntu_latest.sif env | grep MYVAR
MYVAR=Tue Apr 26 14:37:07 CDT 2022

--no-eval / --compat behavior
MYVAR was not evaluated and is a literal `$(date)`
$ singularity run --no-eval ~/ubuntu_latest.sif env | grep MYVAR
MYVAR=$(date)

The --compat flag is a short-hand flag to activate --no-eval along with
other Docker/OCI compatibility flags. See Docker-like --compat Flag for more details.

Using Host Variables

To set a container environment variable to the value of a variable on
the host, use double quotes around the variable, so that it is
processed by the host shell before the value is passed to
SingularityCE. For example:

singularity run --env "MYHOST=$HOSTNAME" mycontainer.sif

This will set the MYHOST environment variable inside the container
to the value of the HOSTNAME on the host system. $HOSTNAME is
substituted before the host shell runs singularity.

Note

You can often use no quotes, but it is good practice to use quotes
consistently so that variables containing e.g. spaces are handled
correctly.

Using Container Variables

To set an environment variable to a value that references another
variable inside the container, you should escape the $ sign to
\$. This prevents the host shell from substituting the
value. Instead it will be substituted inside the container.

For example, to create an environment variable MYPATH, with the
same value as PATH in the container (not the host’s PATH):

singularity run --env "MYPATH=\$PATH" mycontainer.sif

You can also use this approach to append or prepend to variables that
are already set in the container. For example, --env
PATH="\$PATH:/endpath" would have the same effect as --env
APPEND_PATH="/endpath", which uses the special APPEND/PREPEND
handling for PATH discussed above.

Quoting / Avoiding Evaluation

If you need to pass an environment variable into the container
verbatim, it must be quoted and escaped appropriately. For example, if
you need to set a path containing a literal $LIB for the
LD_PRELOAD environment variable:

singularity run --env="LD_PRELOAD=/foo/bar/\\\$LIB/baz.so" mycontainer.sif

This will result in LD_PRELOAD having the value
/foo/bar/$LIB/baz.so inside the container.

The host shell consumes the double \\, and then environment
processing within SingularityCE will consume the third \ that
escapes the literal $.

You can also use single quotes on the command line, to avoid one
level of escaping:

singularity run --env='LD_PRELOAD=/foo/bar/\$LIB/baz.so' mycontainer.sif

Environment Variable Precedence

When a container is run with SingularityCE, the container
environment is constructed in the following order:

	Clear the environment, keeping just HOME and
SINGULARITY_APPNAME.

	Set Docker/OCI defined environment variables, where a Docker or
OCI image was used as the base for the container build.

	If PATH is not defined set the SingularityCE default PATH
or

	If PATH is defined, add any missing path parts from
SingularityCE defaults

	Set environment variables defined explicitly in the
%environment section of the definition file. These can
override any previously set values.

	Set environment variables that were defined in the %post
section of the build, by addition to the
$SINGULARITY_ENVIRONMENT file.

	Set SCIF (--app) environment variables

	Set base environment essential vars (PS1 and
LD_LIBRARY_PATH)

	Inject SINGULARITYENV_ / --env / --env-file variables
so they can override or modify any previous values.

	Apply special APPEND_PATH / PREPEND_PATH handling.

	Restore environment variables from the host, if they have not
already been set in the container, and the --cleanenv /
--containall options were not specified.

Warning

While SingularityCE will process additional scripts found under
/.singularity.d/env inside the container, it is strongly
recommended to avoid manipulating the container environment by
directly adding or modifying scripts in this directory. Please use
the %environment section of the definition file, and the
$SINGULARITY_ENVIRONMENT file from %post if required.

A future version of SingularityCE may move container scripts,
environment, and metadata outside of the container’s root
filesystem. This will permit further reproducibility and
compatibility improvements, but will preclude environment
manipulation via arbitrary scripts.

Umask / Default File Permissions

The umask value on a Linux system controls the default permissions
for newly created files. It is not an environment variable, but
influences the behavior of programs in the container when they create
new files.

Note

A detailed description of what the umask is, and how it works can
be found at Wikipedia [https://en.wikipedia.org/wiki/Umask].

SingularityCE 3.7 and above set the umask in the container to match
the value outside, unless:

	The --fakeroot option is used, in which case a 0022 umask
is set so that root owned newly created files have expected
‘system default’ permissions, and can be accessed by other
non-root users who may use the same container later.

	The --no-umask option is used, in which case a 0022 umask
is set.

Note

In SingularityCE 3.6 and below a default 0022 umask was always
applied.

Container Metadata

Each SingularityCE container has metadata describing the container, how
it was built, etc. This metadata includes the definition file used to
build the container and labels, which are specific pieces of information
set automatically or explicitly when the container is built.

For containers that are generated with SingularityCE version 3.0 and
later, default labels are represented using the rc1 Label Schema [http://label-schema.org/rc1/].

Inherited Labels

When building a container from an existing image, either directly from a
URI or with a definition file, your container will inherit the labels
that are set in that base image. For example the LABEL a Docker
container sets in its Dockerfile, or a SIF container that sets
labels in its definition file as described below.

Inherited labels can only be overwritten during a build when the build
is performed using the --force option. SingularityCE will warn that
it is not modifying an existing label when --force is not used:

$ singularity build test2.sif test2.def
...
INFO: Adding labels
WARNING: Label: OWNER already exists and force option is false, not overwriting

Note

SingularityCE 3.0 through 3.8 did not inherit labels from Docker/OCI
images during a build. SingularityCE 3.9 restores the behavior of
2.x, and inherits these labels.

Custom Labels

You can add custom labels to your container using the %labels
section in a definition file:

Bootstrap: library
From: ubuntu:latest

%labels
 OWNER Joana

Dynamic Build Time Labels

You may wish to set a label to a value that is not known in advance,
when you are writing the definition file, but can be obtained in the
%post section of your definition file while the container is
building.

SingularityCE 3.7 and above allow this, through adding labels to the
file defined by the SINGULARITY_LABELS environment variable in the
%post section:

Bootstrap: library
From: ubuntu:latest

These labels take a fixed value in the definition
%labels
 OWNER Joana

We can now also set labels to a value at build time
%post
 VAL="$(myprog --version)"
 echo "my.label $VAL" >> "$SINGULARITY_LABELS"

Labels must be added to the file one per line, in a NAME VALUE
format, where the name and value are separated by a space.

Inspecting Metadata

The inspect command gives you the ability to view the labels and/or
other metadata that were added to your container when it was built.

-l/ --labels

Running inspect without any options, or with the -l or --labels
options will display any labels set on the container

$ singularity inspect ubuntu.sif
my.label: version 1.2.3
OWNER: Joana
org.label-schema.build-arch: amd64
org.label-schema.build-date: Thursday_12_November_2020_10:51:59_CST
org.label-schema.schema-version: 1.0
org.label-schema.usage.singularity.deffile.bootstrap: library
org.label-schema.usage.singularity.deffile.from: ubuntu:latest
org.label-schema.usage.singularity.version: 3.7.0-rc.1

We can easily see when the container was built, the source of the base
image, and the exact version of SingularityCE that was used to build it.

The custom label OWNER that we set in our definition file is also
visible.

-d / --deffile

The -d or -deffile flag shows the definition file(s) that were
used to build the container.

$ singularity inspect --deffile jupyter.sif

And the output would look like:

Bootstrap: library
From: debian:9

%help
 Container with Anaconda 2 (Conda 4.5.11 Canary) and Jupyter Notebook 5.6.0 for Debian 9.x (Stretch).
 This installation is based on Python 2.7.15

%environment
 JUP_PORT=8888
 JUP_IPNAME=localhost
 export JUP_PORT JUP_IPNAME

%startscript
 PORT=""
 if [-n "$JUP_PORT"]; then
 PORT="--port=${JUP_PORT}"
 fi

 IPNAME=""
 if [-n "$JUP_IPNAME"]; then
 IPNAME="--ip=${JUP_IPNAME}"
 fi

 exec jupyter notebook --allow-root ${PORT} ${IPNAME}

%setup
 #Create the .condarc file where the environments/channels from conda are specified, these are pulled with preference to root
 cd /
 touch .condarc

%post
 echo 'export RANDOM=123456' >>$SINGULARITY_ENVIRONMENT
 #Installing all dependencies
 apt-get update && apt-get -y upgrade
 apt-get -y install \
 build-essential \
 wget \
 bzip2 \
 ca-certificates \
 libglib2.0-0 \
 libxext6 \
 libsm6 \
 libxrender1 \
 git
 rm -rf /var/lib/apt/lists/*
 apt-get clean
 #Installing Anaconda 2 and Conda 4.5.11
 wget -c https://repo.continuum.io/archive/Anaconda2-5.3.0-Linux-x86_64.sh
 /bin/bash Anaconda2-5.3.0-Linux-x86_64.sh -bfp /usr/local
 #Conda configuration of channels from .condarc file
 conda config --file /.condarc --add channels defaults
 conda config --file /.condarc --add channels conda-forge
 conda update conda
 #List installed environments
 conda list

Which is the definition file for the jupyter.sif container.

-r / --runscript

The -r or --runscript option shows the runscript for the image.

$ singularity inspect --runscript jupyter.sif

And the output would look like:

#!/bin/sh
OCI_ENTRYPOINT=""
OCI_CMD="bash"
ENTRYPOINT only - run entrypoint plus args
if [-z "$OCI_CMD"] && [-n "$OCI_ENTRYPOINT"]; then
SINGULARITY_OCI_RUN="${OCI_ENTRYPOINT} $@"
fi

CMD only - run CMD or override with args
if [-n "$OCI_CMD"] && [-z "$OCI_ENTRYPOINT"]; then
if [$# -gt 0]; then
 SINGULARITY_OCI_RUN="$@"
else
 SINGULARITY_OCI_RUN="${OCI_CMD}"
fi
fi

ENTRYPOINT and CMD - run ENTRYPOINT with CMD as default args
override with user provided args
if [$# -gt 0]; then
 SINGULARITY_OCI_RUN="${OCI_ENTRYPOINT} $@"
else
 SINGULARITY_OCI_RUN="${OCI_ENTRYPOINT} ${OCI_CMD}"
fi

exec $SINGULARITY_OCI_RUN

-t / --test

The -t or --test flag shows the test script for the image.

$ singularity inspect --test jupyter.sif

This will output the corresponding %test section from the definition
file.

-e / --environment

The -e or --environment flag shows the environment variables
that are defined in the container image. These may be set from one or
more environment files, depending on how the container was built.

$ singularity inspect --environment jupyter.sif

And the output would look like:

==90-environment.sh==
#!/bin/sh

JUP_PORT=8888
JUP_IPNAME=localhost
export JUP_PORT JUP_IPNAME

-H / --helpfile

The -H or -helpfile flag will show the container’s description
in the %help section of its definition file.

You can call it this way:

$ singularity inspect --helpfile jupyter.sif

And the output would look like:

Container with Anaconda 2 (Conda 4.5.11 Canary) and Jupyter Notebook 5.6.0 for Debian 9.x (Stretch).
This installation is based on Python 2.7.15

-j / --json

This flag gives you the possibility to output your labels in a JSON
format.

You can call it this way:

$ singularity inspect --json ubuntu.sif

And the output would look like:

{
 "data": {
 "attributes": {
 "labels": {
 "my.label": "version 1.2.3",
 "OWNER": "Joana",
 "org.label-schema.build-arch": "amd64",
 "org.label-schema.build-date": "Thursday_12_November_2020_10:51:59_CST",
 "org.label-schema.schema-version": "1.0",
 "org.label-schema.usage.singularity.deffile.bootstrap": "library",
 "org.label-schema.usage.singularity.deffile.from": "ubuntu:latest",
 "org.label-schema.usage.singularity.version": "3.7.0-rc.1"
 }
 }
 },
 "type": "container"
}

/.singularity.d directory

The /.singularity.d directory in a container contains scripts and
environment files that are used when a container is executed.

You should not manually modify files under /.singularity.d, from
your definition file during builds, or directly within your container
image. Recent 3.x versions of SingularityCE replace older action scripts
dynamically, at runtime, to support new features. In the longer term,
metadata will be moved outside of the container, and stored only in the
SIF file metadata descriptor.

/.singularity.d/

├── actions
│ ├── exec
│ ├── run
│ ├── shell
│ ├── start
│ └── test
├── env
│ ├── 01-base.sh
| ├── 10-docker2singularity.sh
│ ├── 90-environment.sh
│ ├── 91-environment.sh
| ├── 94-appsbase.sh
│ ├── 95-apps.sh
│ └── 99-base.sh
├── labels.json
├── libs
├── runscript
├── runscript.help
├── Singularity
└── startscript

	actions: This directory contains helper scripts to allow the
container to carry out the action commands. (e.g. exec , run
or shell). In later versions of SingularityCE, these files may be
dynamically written at runtime, and should not be modified in the
container.

	env: All *.sh files in this directory are sourced in alphanumeric
order when the container is started. For legacy purposes there is a symbolic
link called /environment that points to
/.singularity.d/env/90-environment.sh. Whenever possible, avoid modifying
or creating environment files manually to prevent potential issues building &
running containers with future versions of SingularityCE. Additional
facilities such as --env and --env-file are available to allow
manipulation of the container environment at runtime.

	labels.json: The json file that stores a containers labels
described above.

	libs: At runtime the user may request some host-system libraries
to be mapped into the container (with the --nv option for
example). If so, this is their destination.

	runscript: The commands in this file will be executed when the
container is invoked with the run command or called as an
executable. For legacy purposes there is a symbolic link called
/singularity that points to this file.

	runscript.help: Contains the description that was added in the
%help section.

	SingularityCE: This is the definition file that was used to
generate the container. If more than 1 definition file was used to
generate the container additional SingularityCE files will appear in
numeric order in a sub-directory called bootstrap_history.

	startscript: The commands in this file will be executed when the
container is invoked with the instance start command.

Plugins

Overview

A SingularityCE plugin is a package that can be dynamically loaded by the
SingularityCE runtime, augmenting SingularityCE with experimental, non-standard
and/or vendor-specific functionality.

Plugins can influence the behaviour of SingularityCE in specific ways:

	A cli plugin can use the Command callback to add or modify CLI
subcommands and/or flags.

	A cli plugin can use the SingularityEngineConfig callback to change the
container configuration before it is passed to the runtime, e.g. adding bind
mounts etc.

	A runtime plugin can use the MonitorContainer callback to watch the
container process as it is executing.

	A runtime plugin can use the PostStartProcess callback to carry out a task
after the container has been started.

	A runtime plugin can use the RegisterImageDriver callback to implement an
alternative way of providing a container image to execute.

Limitations / Requirements

The way that plugin functionality is implemented in the Go language, which
SingularityCE is written with, is quite restrictive.

Go plugins must be built with the same Go version, and set of dependencies, as
the main program they will be loaded into. This means it is generally
impractical to develop and build plugins except in lock-step with the main
SingularityCE source tree.

Functionality that can be implemented with plugins is limited to the scope of
the exposed plugin callbacks. Container runtimes such as SingularityCE execute
using multiple processes, with distinct boundaries that limit the influence a
plugin can have.

If you are considering writing a plugin for SingularityCE you may wish to
investigate whether the feature can be contributed to the main source tree
directly via a PR. This simplifies future maintenance, and avoids the
limitations of Go plugins.

Using Plugins

The list command prints the currently installed plugins.

$ singularity plugin list
There are no plugins installed.

Plugins are packaged and distributed as binaries encoded with the versatile
Singularity Image Format (SIF). However, plugin authors may also distribute the
source code of their plugins. A plugin can be compiled from its source code with
the compile command. A number of example plugins are included in the
examples/plugins directory of the SingularityCE source.

$ singularity plugin compile examples/plugins/cli-plugin/
INFO: Plugin built to: /home/dtrudg/Git/singularity/examples/plugins/cli-plugin/cli-plugin.sif

Upon successful compilation, a SIF file will appear in the directory of the
plugin’s source code.

$ ls examples/plugins/cli-plugin/ | grep sif
cli-plugin.sif

Note

Due to the structure of the SingularityCE project, and the strict
requirements of Go plugin compilation, all plugins must be compiled from
within the SingularityCE source code tree.

The ability to compile plugins outside of the SingularityCE tree, that
previously existed, has been removed due to incompatible changes in Go 1.18.

Every plugin encapsulates various information such as the plugin’s
author, the plugin’s version, etc. To view this information about a
plugin, use the inspect command.

$ singularity plugin inspect examples/plugins/cli-plugin/cli-plugin.sif
Name: github.com/sylabs/singularity/cli-example-plugin
Description: This is a short example CLI plugin for Singularity
Author: Sylabs Team
Version: 0.1.0

To install a plugin, use the install command. This operation
requires root privilege.

$ sudo singularity plugin install examples/plugins/cli-plugin/cli-plugin.sif
$ singularity plugin list
ENABLED NAME
 yes sylabs.io/cli-plugin

After successful installation, the plugin will automatically be enabled.
Any plugin can be disabled with the disable command and re-enabled
with the enable command. Both of these operations require root
privilege.

$ sudo singularity plugin disable sylabs.io/cli-plugin
$ singularity plugin list
ENABLED NAME
 no sylabs.io/cli-plugin

$ sudo singularity plugin enable sylabs.io/cli-plugin
$ singularity plugin list
ENABLED NAME
 yes sylabs.io/cli-plugin

Finally, to uninstall a plugin, use the uninstall command. This
operation requires root privilege.

$ sudo singularity plugin uninstall sylabs.io/cli-plugin
Uninstalled plugin "sylabs.io/cli-plugin".

$ singularity plugin list
There are no plugins installed.

Writing a Plugin

Developers interested in writing SingularityCE plugins can get started
by reading the Go documentation [https://godoc.org/github.com/sylabs/singularity/pkg/plugin] for the
plugin package.

Example plugins can be found in the SingularityCE source code [https://github.com/sylabs/singularity/tree/main/examples/plugins].

Security Options

SingularityCE 3.0 introduces many new security related options to the
container runtime. This document will describe the new methods users
have for specifying the security scope and context when running
SingularityCE containers.

Linux Capabilities

Note

It is extremely important to recognize that granting users Linux
capabilities with the capability command group is usually
identical to granting those users root level access on the host
system. Most if not all capabilities will allow users to “break
out” of the container and become root on the host. This feature is
targeted toward special use cases (like cloud-native architectures)
where an admin/developer might want to limit the attack surface
within a container that normally runs as root. This is not a good
option in multi-tenant HPC environments where an admin wants to grant
a user special privileges within a container. For that and similar
use cases, the fakeroot feature is a better option.

SingularityCE provides full support for granting and revoking Linux
capabilities on a user or group basis. For example, let us suppose that
an admin has decided to grant a user (named pinger) capabilities to
open raw sockets so that they can use ping in a container where the
binary is controlled via capabilities. For information about how to
manage capabilities as an admin please refer to the capability admin
docs [https://sylabs.io/guides/3.10/admin-guide/configfiles.html#capability.json].

To take advantage of this granted capability as a user, pinger must
also request the capability when executing a container with the
--add-caps flag like so:

$ singularity exec --add-caps CAP_NET_RAW library://sylabs/tests/ubuntu_ping:v1.0 ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=52 time=73.1 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 73.178/73.178/73.178/0.000 ms

If the admin decides that it is no longer necessary to allow the user
pinger to open raw sockets within SingularityCE containers, they can
revoke the appropriate Linux capability and pinger will not be able
to add that capability to their containers anymore:

$ singularity exec --add-caps CAP_NET_RAW library://sylabs/tests/ubuntu_ping:v1.0 ping -c 1 8.8.8.8
WARNING: not authorized to add capability: CAP_NET_RAW
ping: socket: Operation not permitted

Another scenario which is atypical of shared resource environments, but
useful in cloud-native architectures is dropping capabilities when
spawning containers as the root user to help minimize attack surfaces.
With a default installation of SingularityCE, containers created by the
root user will maintain all capabilities. This behavior is configurable
if desired. Check out the capability configuration [https://sylabs.io/guides/3.10/admin-guide/configfiles.html#capability.json]
and root default capabilities [https://sylabs.io/guides/3.10/admin-guide/configfiles.html#setuid-and-capabilities]
sections of the admin docs for more information.

Assuming the root user will execute containers with the CAP_NET_RAW
capability by default, executing the same container pinger executed
above works without the need to grant capabilities:

singularity exec library://sylabs/tests/ubuntu_ping:v1.0 ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=52 time=59.6 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 59.673/59.673/59.673/0.000 ms

Now we can manually drop the CAP_NET_RAW capability like so:

singularity exec --drop-caps CAP_NET_RAW library://sylabs/tests/ubuntu_ping:v1.0 ping -c 1 8.8.8.8
ping: socket: Operation not permitted

And now the container will not have the ability to create new sockets,
causing the ping command to fail.

The --add-caps and --drop-caps options will accept the all
keyword. Of course appropriate caution should be exercised when using
this keyword.

Building encrypted containers

Beginning in SingularityCE 3.4.0 it is possible to build and run
encrypted containers. The containers are decrypted at runtime entirely
in kernel space, meaning that no intermediate decrypted data is ever
present on disk. See encrypted containers for more
details.

Security related action options

SingularityCE 3.0 introduces many new flags that can be passed to the
action commands; shell, exec, and run allowing fine grained
control of security.

--add-caps

As explained above, --add-caps will “activate” Linux capabilities
when a container is initiated, providing those capabilities have been
granted to the user by an administrator using the capability add
command. This option will also accept the case insensitive keyword
all to add every capability granted by the administrator.

--allow-setuid

The SetUID bit allows a program to be executed as the user that owns the
binary. The most well-known SetUID binaries are owned by root and allow
a user to execute a command with elevated privileges. But other SetUID
binaries may allow a user to execute a command as a service account.

By default SetUID is disallowed within SingularityCE containers as a
security precaution. But the root user can override this precaution and
allow SetUID binaries to behave as expected within a SingularityCE
container with the --allow-setuid option like so:

$ sudo singularity shell --allow-setuid some_container.sif

--keep-privs

It is possible for an admin to set a different set of default
capabilities or to reduce the default capabilities to zero for the root
user by setting the root default capabilities parameter in the
singularity.conf file to file or no respectively. If this
change is in effect, the root user can override the singularity.conf
file and enter the container with full capabilities using the
--keep-privs option.

$ sudo singularity exec --keep-privs library://centos ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=128 time=18.8 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 18.838/18.838/18.838/0.000 ms

--drop-caps

By default, the root user has a full set of capabilities when they enter
the container. You may choose to drop specific capabilities when you
initiate a container as root to enhance security.

For instance, to drop the ability for the root user to open a raw socket
inside the container:

$ sudo singularity exec --drop-caps CAP_NET_RAW library://centos ping -c 1 8.8.8.8
ping: socket: Operation not permitted

The drop-caps option will also accept the case insensitive keyword
all as an option to drop all capabilities when entering the
container.

--security

The --security flag allows the root user to leverage security
modules such as SELinux, AppArmor, and seccomp within your SingularityCE
container. You can also change the UID and GID of the user within the
container at runtime.

For instance:

$ sudo whoami
root

$ sudo singularity exec --security uid:1000 my_container.sif whoami
david

To use seccomp to blacklist a command follow this procedure. (It is
actually preferable from a security standpoint to whitelist commands but
this will suffice for a simple example.) Note that this example was run
on Ubuntu and that SingularityCE was installed with the
libseccomp-dev and pkg-config packages as dependencies.

First write a configuration file. An example configuration file is
installed with SingularityCE, normally at
/usr/local/etc/singularity/seccomp-profiles/default.json. For this
example, we will use a much simpler configuration file to blacklist the
mkdir command.

{
 "defaultAction": "SCMP_ACT_ALLOW",
 "archMap": [
 {
 "architecture": "SCMP_ARCH_X86_64",
 "subArchitectures": [
 "SCMP_ARCH_X86",
 "SCMP_ARCH_X32"
]
 }
],
 "syscalls": [
 {
 "names": [
 "mkdir"
],
 "action": "SCMP_ACT_KILL",
 "args": [],
 "comment": "",
 "includes": {},
 "excludes": {}
 }
]
}

We’ll save the file at /home/david/no_mkdir.json. Then we can invoke
the container like so:

$ sudo singularity shell --security seccomp:/home/david/no_mkdir.json my_container.sif

Singularity> mkdir /tmp/foo
Bad system call (core dumped)

Note that attempting to use the blacklisted mkdir command resulted
in a core dump.

The full list of arguments accepted by the --security option are as
follows:

--security="seccomp:/usr/local/etc/singularity/seccomp-profiles/default.json"
--security="apparmor:/usr/bin/man"
--security="selinux:context"
--security="uid:1000"
--security="gid:1000"
--security="gid:1000:1:0" (multiple gids, first is always the primary group)

Network virtualization

SingularityCE provides full integration with cni [https://github.com/containernetworking/cni] , to make network
virtualization easy. The following options can be used with the the
action commands (exec, run, and shell) to create and
configure a virtualized network for a container.

Note

Many of these options are available only to the root user by
default. Unrestricted ability to configure networking for containers
would allow users to affect networking on the host, or in a cluster.

SingularityCE 3.8 allows the administrator to permit a list of
unprivileged users and/or groups to use specified network
configurations. This is accomplished through settings in
singularity.conf. See the administrator guide for details.

--dns

The --dns option allows you to specify a comma separated list of DNS
servers to add to the /etc/resolv.conf file.

$ nslookup sylabs.io | grep Server
Server: 127.0.0.53

$ sudo singularity exec --dns 8.8.8.8 ubuntu.sif nslookup sylabs.io | grep Server
Server: 8.8.8.8

$ sudo singularity exec --dns 8.8.8.8 ubuntu.sif cat /etc/resolv.conf
nameserver 8.8.8.8

--hostname

The --hostname option accepts a string argument to change the
hostname within the container.

$ hostname
ubuntu-bionic

$ sudo singularity exec --hostname hal-9000 my_container.sif hostname
hal-9000

--net

Passing the --net flag will cause the container to join a new
network namespace when it initiates. New in SingularityCE 3.0, a bridge
interface will also be set up by default.

$ hostname -I
10.0.2.15

$ sudo singularity exec --net my_container.sif hostname -I
10.22.0.4

--network

The --network option can only be invoked in combination with the
--net flag. It accepts a comma delimited string of network types.
Each entry will bring up a dedicated interface inside container.

$ hostname -I
172.16.107.251 10.22.0.1

$ sudo singularity exec --net --network ptp ubuntu.sif hostname -I
10.23.0.6

$ sudo singularity exec --net --network bridge,ptp ubuntu.sif hostname -I
10.22.0.14 10.23.0.7

When invoked, the --network option searches the singularity
configuration directory (commonly
/usr/local/etc/singularity/network/) for the cni configuration file
corresponding to the requested network type(s). Several configuration
files are installed with SingularityCE by default corresponding to the
following network types:

	bridge

	ptp

	ipvlan

	macvlan

	none (must be used alone)

By default, none is the only network configuration that can be used
by non-privileged users. It isolates the container network from the host
network with a loopback interface.

Administrators can permit certain users or groups to request other
network configurations through options in singularity.conf.
Additional cni configuration files can be added to the network
configuration directory as required, and SingularityCE’s provided
configurations may also be modified.

--network-args

The --network-args option provides a convenient way to specify
arguments to pass directly to the cni plugins. It must be used in
conjunction with the --net flag.

For instance, let’s say you want to start an NGINX [https://www.nginx.com/] server on port 80 inside of the container,
but you want to map it to port 8080 outside of the container:

$ sudo singularity instance start --writable-tmpfs \
 --net --network-args "portmap=8080:80/tcp" docker://nginx web2

The above command will start the Docker Hub official NGINX image running
in a background instance called web2. The NGINX instance will need
to be able to write to disk, so we’ve used the --writable-tmpfs
argument to allocate some space in memory. The --net flag is
necessary when using the --network-args option, and specifying the
portmap=8080:80/tcp argument which will map port 80 inside of the
container to 8080 on the host.

Now we can start NGINX inside of the container:

$ sudo singularity exec instance://web2 nginx

And the curl command can be used to verify that NGINX is running on
the host port 8080 as expected.

$ curl localhost:8080
10.22.0.1 - - [16/Oct/2018:09:34:25 -0400] "GET / HTTP/1.1" 200 612 "-" "curl/7.58.0" "-"
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

For more information about cni, check the cni specification [https://github.com/containernetworking/cni/blob/master/SPEC.md].

Limiting Container Resources

It’s often useful to limit the resources that are consumed by a container, e.g.
to allow the container to only use 1 CPU, or 50% of the RAM on the system.
Although on HPC clusters it’s common to launch containers with a job scheduler
that can set limits per job, the following scenarios are examples where more
direct control is useful:

	When running multiple containerized applications inside an HPC job, where each
container in the job should have different resource limits.

	When testing HPC code on a workstation, to avoid excessive CPU / RAM usage
bringing the desktop environment and other applications to a halt.

	When benchmarking code that doesn’t provide internal means to limit the number
of CPUs it uses.

There are three ways to apply limits to a container that is run with
SingularityCE:

	Using the command line flags introduced in v3.10.

	Using the --apply-cgroups flag to apply a cgroups.toml file that
defines the resource limits.

	Using external tools such as systemd-run tool to apply limits, and then
call singularity.

Requirements - Linux Cgroups

Resource limits are applied to containers using functionality in the Linux
kernel known as control groups or cgroups. There are two versions of
cgroups:

cgroups v1 has a more complex structure, and allows only the root user to
safely apply limits to applications. If your system is using cgroups v1 then you
can only use the CLI resource limit flags or --apply-cgroups when running
containers as the root user.

cgroups v2 has a simplified structure, and is designed in a way that permits
delegation of cgroups control to standard users. This delegation is usually
accomplished via systemd.

Generally, to apply resource limits to a container as a non-root user your
system must:

	Be using cgroups v2, in the unified hierarchy mode.

	Have a Linux kernel version >= 4.15.

	Have systemd version >= 224.

	Have systemd cgroups enabled in singularity.conf (this is the default).

	Have systemd configured to delegate cgroups controllers to non-root users.

Recent distributions such as Ubuntu 22.04, Debian 11, Fedora 31, and newer,
satisfy these criteria by default. On older distributions support can often be
enabled. Consult the admin documentation or speak to your system administrator
about this.

Command Line Limit Flags

SingularityCE 3.10 introduced a number of simple command line flags that you can
use with shell/run/exec and the instance commands to directly apply resource
limits to a container when you run it.

The flags detailed below are compatible with those used by the docker CLI,
except that the short forms are not supported. For example, you cannot use
-c instead of --cpu-shares because -c is used by SingularityCE for
another purpose.

Not all limits provided by other runtimes are currently supported by
SingularityCE. Specifically, the --device- flags supported by the docker
CLI are not yet available.

CPU Limits

--cpus sets the number of CPUs, or fractional CPUs, that the container can
use. The minimum is 0.01 or one tenth of a physical CPU. The maximum is the
number of CPU cores on your system.

Limit container to 3.5 CPUs
$ singularity run --cpus 3.5 myfirstapp.sif

--cpu-shares sets a relative weight for a container’s access to the system’s
CPUs, versus other containers that also have a --cpus-shares value set. If
container A has 1024 cpu shares, and container B has 512 cpu shares, then
container A will receive twice as much CPU time than container B, but only when
there is contention for CPUs, i.e. the containers are able to consume more CPU
time than is available.

Container A - twice as much CPU priority as container B
$ singularity run --cpu-shares 1024 myfirstapp.sif

Container A - half as much CPU priority as container A
$ singularity run --cpu-shares 512 mysecondapp.sif

--cpu-set-cpus specifies a list of physical CPU IDs on which a container can
run. For example, on a dual CPU system you might pin one container to the first
12 cores on CPU 1, and a second container to the second 12 cores on CPU 2.

--cpu-set-mems specifies a list of memory nodes the container can use. It
should generally be set to the same value as --cpu-set-cpus.

Container A - first CPU
$ singularity run --cpu-set-cpus 0-11 --cpu-set-mems 0-11 myfirstapp.sif

Container B - second CPU
$ singularity run --cpu-set-cpus 12-23 --cpu-set-mems 12-23 myfirstapp.sif

Memory Limits

--memory sets the maximum amount of RAM that a container can use, in bytes.
You can use suffixes such as M or G to specify megabytes or gigabytes.
If the container tries to use more memory than its limit, the system will kill
it.

Run a program that will use 10GB of RAM, with a 100MB limit
$ singularity exec --memory 100M memhog.sif memhog 10G
...Killed

--memory-reservation sets a soft limit, which should be lower than the hard
limit set with --memory. When there is contention for memory, the system
will attempt to make sure the container doesn’t exceed the soft limit.

Kill my program if it exceeds 10G, but aim for 8G if there is contention
$ singularity exec --memory 10G --memory-reservation 8G myfirstapp.sif

--memory-swap sets the total amount of memory and swap space that a
container can use. You must set --memory along with --memory-swap. A
value of -1 means unlimited swap. If --memory-swap is not set or is
0, then the container can use an amount of swap up to the value of
--memory. It’s easier to understand this flag with examples:

Run a container that can use up to 1G RAM, or swap if it is swapped out
$ singularity run --memory 1G myfirstapp.sif

Run a container that can use up to 1G RAM, and no swap space
$ singularity run --memory 1G --memory-swap 1G myfirstapp.sif

Run a container that can use up to 1G RAM, and unlimited swap space
$ singularity run --memory 1G --memory-swap -1 myfirstapp.sif

Run a container that can use up to 1G RAM, and 1G swap space
$ singularity run --memory 1G --memory-swap 2G myfirstapp.sif

IO Limits

Note

Requires the cfq or bfq IO scheduler to be configured for block IO on
the system. This is common on modern distributions, but not universal. Ask
your system administrator if IO limits are not working as expected.

--blkio-weight sets a relative weight for the container when performing
block I/O, e.g. reading/writing to/from disk. The weight should be between 10
and 1000, and will control how much I/O access a container recieves when there
is contention for I/O with other containers. It may be useful to give high
priority to a container that needs infrequent but time sensitive data access,
running alongside an application that is continuously performing bulk reads.

Container A - ten times as much block IO priority as container B
$ singularity run --blkio-weight 1000 myfirstapp.sif

Container A - ten times less block IO priority as container A
$ singularity run --blkio-weight 100 mysecondapp.sif

--blkio-weight-device sets a relative weight for the container when performing
block I/O on a specific device. Specify the device and weight as <device path>:weight:

Container A - ten times as much block IO priority as container B on disk /dev/sda
$ singularity run --blkio-weight-device /dev/sda:1000 myfirstapp.sif

Container A - ten times less block IO priority as container A on disk /dev/sda
$ singularity run --blkio-weight-device /dev/sda:100 mysecondapp.sif

Applying Resource Limits From a TOML file

SingularityCE 3.9 and above can directly apply resource limitations to systems
configured for both cgroups v1 and the v2 unified hierarchy, using the
--apply-cgroups flag. Resource limits are specified using a TOML file that
represents the resources section of the OCI runtime-spec:
https://github.com/opencontainers/runtime-spec/blob/master/config-linux.md#control-groups

On a cgroups v1 system the resources configuration is applied directly.
On a cgroups v2 system the configuration is translated and applied to
the unified hierarchy.

Under cgroups v1, access restrictions for device nodes are managed
directly. Under cgroups v2, the restrictions are applied by attaching
eBPF programs that implement the requested access controls.

To apply resource limits to a container, using the --apply-cgroups
flag, which takes a path to a TOML file specifying the cgroups
configuration to be applied:

$ singularity shell --apply-cgroups /path/to/cgroups.toml my_container.sif

Note

Using --apply-cgroups as a non-root user requires a cgroups v2 system,
configured to use the systemd cgroups manager in singularity.conf.

CPU Limits

CPU usage can be limited using different strategies, with limits
specified in the [cpu] section of the TOML file.

shares

This corresponds to a ratio versus other cgroups with cpu shares.
Usually the default value is 1024. That means if you want to allow
to use 50% of a single CPU, you will set 512 as value.

[cpu]
 shares = 512

A cgroup can get more than its share of CPU if there are enough idle CPU
cycles available in the system, due to the work conserving nature of the
scheduler, so a contained process can consume all CPU cycles even with a
ratio of 50%. The ratio is only applied when two or more processes
conflicts with their needs of CPU cycles.

quota/period

You can enforce hard limits on the CPU cycles a cgroup can consume, so
contained processes can’t use more than the amount of CPU time set for
the cgroup. quota allows you to configure the amount of CPU time
that a cgroup can use per period. The default is 100ms (100000us). So if
you want to limit amount of CPU time to 20ms during period of 100ms:

[cpu]
 period = 100000
 quota = 20000

cpus/mems

You can also restrict access to specific CPUs (cores) and associated
memory nodes by using cpus/mems fields:

[cpu]
 cpus = "0-1"
 mems = "0-1"

Where the container has limited access to CPU 0 and CPU 1.

Note

It’s important to set identical values for both cpus and
mems.

Memory Limits

To limit the amount of memory that your container uses to 500MB
(524288000 bytes), set a limit value inside the [memory] section
of your cgroups TOML file:

[memory]
 limit = 524288000

Start your container, applying the toml file, e.g.:

$ singularity run --apply-cgroups path/to/cgroups.toml library://alpine

After that, you can verify that the container is only using 500MB of
memory. This example assumes that there is only one running container.
If you are running multiple containers you will find multiple cgroups
trees under the singularity directory.

cgroups v1
$ cat /sys/fs/cgroup/memory/singularity/*/memory.limit_in_bytes
 524288000

cgroups v2 - note translation of memory.limit_in_bytes -> memory.max
$ cat /sys/fs/cgroup/singularity/*/memory.max
524288000

IO Limits

To control block device I/O, applying limits to competing container, use
the [blockIO] section of the TOML file:

[blockIO]
 weight = 1000
 leafWeight = 1000

weight and leafWeight accept values between 10 and 1000.

weight is the default weight of the group on all the devices until
and unless overridden by a per device rule.

leafWeight relates to weight for the purpose of deciding how heavily
to weigh tasks in the given cgroup while competing with the cgroup’s
child cgroups.

To apply limits to specific block devices, you must set configuration
for specific device major/minor numbers. For example, to override
weight/leafWeight for /dev/loop0 and /dev/loop1 block
devices, set limits for device major 7, minor 0 and 1:

[blockIO]
 [[blockIO.weightDevice]]
 major = 7
 minor = 0
 weight = 100
 leafWeight = 50
 [[blockIO.weightDevice]]
 major = 7
 minor = 1
 weight = 100
 leafWeight = 50

You can also limit the IO read/write rate to a specific absolute value,
e.g. 16MB per second for the /dev/loop0 block device. The rate
is specified in bytes per second.

[blockIO]
 [[blockIO.throttleReadBpsDevice]]
 major = 7
 minor = 0
 rate = 16777216
 [[blockIO.throttleWriteBpsDevice]]
 major = 7
 minor = 0
 rate = 16777216

Device Limits

Note

Device limits can only be applied when running as the root user, and will be
ignored as a non-root user.

You can limit read (r), write (w), or creation (c) of
devices by a container. Like applying I/O limits to devices, you must
use device node major and minor numbers to create rules for specific
devices or classes of device.

In this example, a container is configured to only be able to read from
or write to /dev/null:

[[devices]]
 access = "rwm"
 allow = false
[[devices]]
 access = "rw"
 allow = true
 major = 1
 minor = 3
 type = "c"

Other limits

SingularityCE can apply all resource limits that are valid in the OCI
runtime-spec resources section. If you use cgroups v1 limits on a cgroups v2
system they will be translated at runtime. You may also specify native cgroups
v2 limits under the unified key.

See
https://github.com/opencontainers/runtime-spec/blob/master/config-linux.md#control-groups
for information about the available limits. Note that SingularityCE uses
TOML format for the configuration file, rather than JSON.

Applying Resource Limits With External Tools

Because SingularityCE starts a container as a simple process, rather
than using a daemon, you can limit resource usage by running the
singularity command inside an existing cgroup. This is convenient
where, for example, a job scheduler uses cgroups to control job limits.
By running singularity inside your batch script, your container will
respect the limits set by the scheduler on the job’s cgroup.

systemd-run

As well as schedulers you can use tools such as systemd-run to
create a cgroup, and run SingularityCE inside of it. This is convenient
on modern cgroups v2 systems, where the creation of cgroups can be
delegated to users through systemd. Without this delegation root
privileges are required to create a cgroup.

For example, assuming your system is configured correctly for
unprivileged cgroup creation via systemd, you can limit the number of
CPUs a container run is allowed to use:

$ systemd-run --user --scope -p AllowedCPUs=1,2 -- singularity run mycontainer.sif

	--user instructs systemd that we want to run as our own user
account.

	--scope will run our command in an interactive scope that
inherits from our environment. By default the command would run as a
service, in the background.

	-p AllowedCPUs=1,2 sets a property on our scope, so that in this
case systemd will then setup a cgroup limiting our command to using
CPU 1 and 2 only.

	The double hyphen -- separates options for systemd-run from
the actual command we wish to execute. This is important so that
systemd-run doesn’t capture any flags we might need to pass to
singularity.

You can read more about how systemd can control resources uses at the
link below, which details the properties you can set using
systemd-run.

https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html

Support for Docker and OCI Containers

The Open Containers Initiative (OCI) container format, which grew out of
Docker, is the dominant standard for cloud-focused containerized
deployments of software. Although SingularityCE’s own container format
has many unique advantages, it’s likely you will need to work with
Docker/OCI containers at some point.

SingularityCE aims for maximum compatibility with Docker, within the
constraints on a runtime that is well suited for use on shared systems
and especially in HPC environments.

Using SingularityCE you can:

	Pull, run, and build from most containers on Docker Hub, without
changes.

	Pull, run, and build from containers hosted on other registries,
including private registries deployed on premise, or in the cloud.

	Pull and build from OCI containers in archive formats, or cached in a
local Docker daemon.

This section will highlight these workflows, and discuss the limitations
and best practices to keep in mind when creating containers targeting
both Docker and SingularityCE.

Containers From Docker Hub

Docker Hub is the most common place that projects publish public
container images. At some point, it’s likely that you will want to run
or build from containers that are hosted there.

Public Containers

It’s easy to run a public Docker Hub container with SingularityCE. Just
put docker:// in front of the container repository and tag. To run
the container that’s called sylabsio/lolcow:latest:

$ singularity run docker://sylabsio/lolcow:latest
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
Getting image source signatures
Copying blob 16ec32c2132b done
Copying blob 5ca731fc36c2 done
Copying config fd0daa4d89 done
Writing manifest to image destination
Storing signatures
2021/10/04 14:50:21 info unpack layer: sha256:16ec32c2132b43494832a05f2b02f7a822479f8250c173d0ab27b3de78b2f058
2021/10/04 14:50:23 info unpack layer: sha256:5ca731fc36c28789c5ddc3216563e8bfca2ab3ea10347e07554ebba1c953242e
INFO: Creating SIF file...

< Mon Oct 4 14:50:30 CDT 2021 >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Note that SingularityCE retrieves blobs and configuration data from
Docker Hub, extracts the layers that make up the Docker container, and
creates a SIF file from them. This SIF file is kept in your
SingularityCE cache directory, so if you run the same
Docker container again the downloads and conversion aren’t required.

To obtain the Docker container as a SIF file in a specific location,
which you can move, share, and keep for later, singularity pull it:

$ singularity pull docker://sylabsio/lolcow
INFO: Using cached SIF image

$ ls -l lolcow_latest.sif
-rwxr-xr-x 1 myuser myuser 74993664 Oct 4 14:55 lolcow_latest.sif

If it’s the first time you pull the container it’ll be downloaded and
translated. If you have pulled the container before, it will be copied
from the cache.

Note

singularity pull of a Docker container actually runs a
singularity build behind the scenes, since we are translating
from OCI to SIF. If you singularity pull a Docker container
twice, the output file isn’t identical because metadata such as dates
from the conversion will vary. This differs from pulling a SIF
container (e.g. from a library:// URI), which always give you an
exact copy of the image.

Docker Hub Limits

Docker Hub introduced limits on anonymous access to its API in November
2020. Every time you use a docker:// URI to run, pull etc. a
container SingularityCE will make requests to Docker Hub in order to
check whether the container has been modified there. On shared systems,
and when running containers in parallel, this can quickly exhaust the
Docker Hub API limits.

We recommend that you singularity pull a Docker image to a local
SIF, and then always run from the SIF file, rather than using
singularity run docker://... repeatedly.

Alternatively, if you have signed up for a Docker Hub account, make sure
that you authenticate before using docker:// container URIs.

Authentication / Private Containers

To make use of the API limits under a Docker Hub account, or to access
private containers, you’ll need to authenticate to Docker Hub. There are
a number of ways to do this with SingularityCE.

Singularity CLI Remote Command

The singularity remote login command supports logging into Docker
Hub and other OCI registries. For Docker Hub, the registry hostname is
docker.io, so you will need to login as below, specifying your
username:

$ singularity remote login --username myuser docker://docker.io
Password / Token:
INFO: Token stored in /home/myuser/.singularity/remote.yaml

The Password / Token you enter must be a Docker Hub CLI access token,
which you should generate in the ‘Security’ section of your account
profile page on Docker Hub.

To check which Docker / OCI registries you are currently logged in to,
use singularity remote list.

To logout of a registry, so that your credentials are forgotten, use
singularity remote logout:

$ singularity remote logout docker://docker.io
INFO: Logout succeeded

Docker CLI Authentication

If you have the docker CLI installed on your machine, you can
docker login to your account. This stores authentication information
in ~/.docker/config.json. The process that SingularityCE uses to
retrieve Docker / OCI containers will attempt to use this information to
login.

Note

SingularityCE can only read credentials stored directly in
~/.docker/config.json. It cannot read credentials from external
Docker credential helpers.

Interactive Login

To perform a one-off interactive login, which will not store your
credentials, use the --docker-login flag:

$ singularity pull --docker-login docker://sylabsio/private
Enter Docker Username: myuser
Enter Docker Password:

Environment Variables

When calling SingularityCE in a CI/CD workflow, or other non-interactive
scenario, it may be useful to specify Docker Hub login credentials using
environment variables. These are often the default way of passing
secrets into jobs within CI pipelines.

Singularity accepts a username, and password / token, as
SINGULARITY_DOCKER_USERNAME and SINGULARITY_DOCKER_PASSWORD
respectively. These environment variables will override any stored
credentials.

$ export SINGULARITY_DOCKER_USERNAME=myuser
$ export SINGULARITY_DOCKER_PASSWORD=mytoken
$ singularity pull docker://sylabsio/private

Containers From Other Registries

You can use docker:// URIs with SingularityCE to pull and run
containers from OCI registries other than Docker Hub. To do this, you’ll
need to include the hostname or IP address of the registry in your
docker:// URI. Authentication with other registries is carried out
in the same basic manner, but sometimes you’ll need to retrieve your
credentials using a specific tool, especially when working with Cloud
Service Provider environments.

Below are specific examples for some common registries. Most other
registries follow a similar pattern for pulling public images, and
authenticating to access private images.

Quay.io

Quay is an OCI container registry used by a large number of projects,
and hosted at https://quay.io. To pull public containers from Quay,
just include the quay.io hostname in your docker:// URI:

$ singularity pull docker://quay.io/bitnami/python:3.7
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
...

$ singularity run python_3.7.sif
Python 3.7.12 (default, Sep 24 2021, 11:48:27)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

To pull containers from private repositories you will need to generate a
CLI token in the Quay web interface, then use it to login with
SingularityCE. Use the same methods as described for Docker Hub above:

	Run singularity remote login --username myuser docker://quay.io
to store your credentials for SingularityCE.

	Use docker login quay.io if docker is on your machine.

	Use the --docker-login flag for a one-time interactive login.

	Set the SINGULARITY_DOCKER_USERNAME and
SINGULARITY_DOCKER_PASSWORD environment variables.

NVIDIA NGC

The NVIDIA NGC catalog at https://ngc.nvidia.com contains various GPU
software, packaged in containers. Many of these containers are
specifically documented by NVIDIA as supported by SingularityCE, with
instructions available.

Previously, an account and API token was required to pull NGC
containers. However, they are now available to pull as a guest without
login:

$ singularity pull docker://nvcr.io/nvidia/pytorch:21.09-py3
INFO: Converting OCI blobs to SIF format
INFO: Starting build...

If you do need to pull containers using an NVIDIA account, e.g. if you
have access to an NGC Private Registry, you will need to generate an API
key in the web interface in order to authenticate.

Use one of the following authentication methods (detailed above for
Docker Hub), with the username $oauthtoken and the password set to
your NGC API key.

	Run singularity remote login --username \$oauthtoken
docker://nvcr.io to store your credentials for SingularityCE.

	Use docker login nvcr.io if docker is on your machine.

	Use the --docker-login flag for a one-time interactive login.

	Set the SINGULARITY_DOCKER_USERNAME="\$oauthtoken" and
SINGULARITY_DOCKER_PASSWORD environment variables.

See also:
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html

GitHub Container Registry

GitHub Container Registry is increasingly used to provide Docker
containers alongside the source code of hosted projects. You can pull a
public container from GitHub Container Registry using a ghcr.io URI:

$ singularity pull docker://ghcr.io/containerd/alpine:latest
INFO: Converting OCI blobs to SIF format
INFO: Starting build...

To pull private containers from GHCR you will need to generate a
personal access token in the GitHub web interface in order to
authenticate. This token must have required scopes. See the GitHub
documentation here. [https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry]

Use one of the following authentication methods (detailed above for
Docker Hub), with your username and personal access token:

	Run singularity remote login --username myuser docker://ghcr.io
to store your credentials for SingularityCE.

	Use docker login ghcr.io if docker is on your machine.

	Use the --docker-login flag for a one-time interactive login.

	Set the SINGULARITY_DOCKER_USERNAME and
SINGULARITY_DOCKER_PASSWORD environment variables.

AWS ECR

To work with an AWS hosted Elastic Container Registry (ECR) generally
requires authentication. There are various ways to generate credentials.
You should follow one of the approaches in the ECR guide [https://docs.aws.amazon.com/AmazonECR/latest/userguide/registry_auth.html]
in order to obtain a username and password.

Warning

The ECR Docker credential helper cannot be used, as SingularityCE
does not currently support external credential helpers used with
Docker, only reading credentials stored directly in the
.docker/config.json file.

The get-login-password approach is the most straightforward. It uses
the AWS CLI to request a password, which can then be used to
authenticate to an ECR private registry in the specified region. The
username used in conjunction with this password is always AWS.

$ aws ecr get-login-password --region region

Then login using one of the following methods:

	Run singularity remote login --username AWS
docker://<accountid>.dkr.ecr.<region>.amazonaws.com to store your
credentials for SingularityCE.

	Use docker login --username AWS
<accountid>.dkr.ecr.<region>.amazonaws.com if docker is on your
machine.

	Use the --docker-login flag for a one-time interactive login.

	Set the SINGULARITY_DOCKER_USERNAME=AWS and
SINGULARITY_DOCKER_PASSWORD environment variables.

You should now be able to pull containers from your ECR URI at
docker://<accountid>.dkr.ecr.<region>.amazonaws.com.

Azure ACR

An Azure hosted Azure Container Registry (ACR) will generally hold
private images and require authentication to pull from. There are
several ways to authenticate to ACR, depending on the account type you
use in Azure. See the ACR documentation [https://docs.microsoft.com/en-us/azure/container-registry/container-registry-authentication?tabs=azure-cli]
for more information on these options.

Generally, for identities, using az acr login from the Azure CLI
will add credentials to .docker/config.json which can be read by
SingularityCE.

Service Principle accounts will have an explicit username and password,
and you should authenticate using one of the following methods:

	Run singularity remote login --username myuser
docker://myregistry.azurecr.io to store your credentials for
SingularityCE.

	Use docker login --username myuser myregistry.azurecr.io if
docker is on your machine.

	Use the --docker-login flag for a one-time interactive login.

	Set the SINGULARITY_DOCKER_USERNAME and
SINGULARITY_DOCKER_PASSWORD environment variables.

The recent repository-scoped access token preview may be more
convenient. See the preview documentation [https://docs.microsoft.com/en-us/azure/container-registry/container-registry-repository-scoped-permissions]
which details how to use az acr token create to obtain a token name
and password pair that can be used to authenticate with the above
methods.

Building From Docker / OCI Containers

If you wish to use an existing Docker or OCI container as the basis for
a new container, you will need to specify it as the bootstrap source
in a SingularityCE definition file.

Just as you can run or pull containers from different registries using a
docker:// URI, you can use different headers in a definition file to
instruct SingularityCE where to find the container you want to use as
the starting point for your build.

Registries In Definition Files

When you wish to build from a Docker or OCI container that’s hosted in a
registry, such as Docker Hub, your definition file should begin with
Bootstrap: docker, followed with a From: line which specifies
the location of the container you wish to pull.

Docker Hub

Docker Hub is the default registry, so when building from Docker Hub the
From: header only needs to specify the container repository and
tag:

Bootstrap: docker
From: ubuntu:20.04

If you singularity build a definition file with these lines,
SingularityCE will fetch the ubuntu:20.04 container image from
Docker Hub, and extract it as the basis for your new container.

Other Registries

To pull from a different Docker registry, you can either specify the
hostname in the From: header, or use the separate Registry:
header. The following two examples are equivalent:

Bootstrap: docker
From: quay.io/bitnami/python:3.7

Bootstrap: docker
Registry: quay.io
From: bitnami/python:3.7

Authentication During a Build

If you are building from an image in a private registry you will need to
ensure that the credentials needed to access the image are available to
SingularityCE.

A build might be run as the root user, e.g. via sudo, or under
your own account with --fakeroot.

If you are running the build as root, using sudo, then any
stored credentials or environment variables must be available to the
root user:

	Use the --docker-login flag for a one-time interactive login.
I.E. run sudo singularity build --docker-login myimage.sif
Singularity.

	Set the SINGULARITY_DOCKER_USERNAME and
SINGULARITY_DOCKER_PASSWORD environment variables. Pass the
environment variables through sudo to the root build process by
running sudo -E singularity build

	Run sudo singularity remote login ... to store your credentials
for the root user on your system. This is separate from storing
the credentials under your own account.

	Use sudo docker login if docker is on your machine. This is
separate from storing the credentials under your own account.

If you are running the build under your account via the --fakeroot
feature you do not need to specially set credentials for the root user.

Archives & Docker Daemon

As well as being hosted in a registry, Docker / OCI containers might be
found inside a running Docker daemon, or saved as an archive.
SingularityCE can build from these locations by using specialized
bootstrap agents.

Containers Cached by the Docker Daemon

If you have pulled or run a container on your machine under docker,
it will be cached locally by the Docker daemon. The docker images
command will list containers that are available:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
sylabsio/lolcow latest 5a15b484bc65 2 hours ago 188MB

This indicates that sylabsio/lolcow:latest has been cached locally
by Docker. You can directly build it into a SIF file using a
docker-daemon: URI specifying the REPOSITORY:TAG container
name:

$ singularity build lolcow_from_docker_cache.sif docker-daemon:sylabsio/lolcow:latest
INFO: Starting build...
Getting image source signatures
Copying blob sha256:a2022691bf950a72f9d2d84d557183cb9eee07c065a76485f1695784855c5193
 119.83 MiB / 119.83 MiB [==] 6s
Copying blob sha256:ae620432889d2553535199dbdd8ba5a264ce85fcdcd5a430974d81fc27c02b45
 15.50 KiB / 15.50 KiB [==] 0s
Copying blob sha256:c561538251751e3685c7c6e7479d488745455ad7f84e842019dcb452c7b6fecc
 14.50 KiB / 14.50 KiB [==] 0s
Copying blob sha256:f96e6b25195f1b36ad02598b5d4381e41997c93ce6170cab1b81d9c68c514db0
 5.50 KiB / 5.50 KiB [==] 0s
Copying blob sha256:7f7a065d245a6501a782bf674f4d7e9d0a62fa6bd212edbf1f17bad0d5cd0bfc
 3.00 KiB / 3.00 KiB [==] 0s
Copying blob sha256:70ca7d49f8e9c44705431e3dade0636a2156300ae646ff4f09c904c138728839
 116.56 MiB / 116.56 MiB [==] 6s
Copying config sha256:73d5b1025fbfa138f2cacf45bbf3f61f7de891559fa25b28ab365c7d9c3cbd82
 3.33 KiB / 3.33 KiB [==] 0s
Writing manifest to image destination
Storing signatures
INFO: Creating SIF file...
INFO: Build complete: lolcow_from_docker_cache.sif

The tag name must be included in the URI. Unlike when pulling from a
registry, the docker-daemon bootstrap agent will not try to pull a
latest tag automatically.

Note

In the example above, the build was performed without sudo. This
is possible only when the user is part of the docker group on the
host, since SingularityCE must contact the Docker daemon through its
socket. If you are not part of the docker group you will need to
use sudo for the build to complete successfully.

To build from an image cached by the Docker daemon in a definition file
use Bootstrap: docker-daemon, and a From: <REPOSITORY>:TAG line:

Bootstrap: docker-daemon
From: sylabsio/lolcow:latest

Containers in Docker Archive Files

Docker allows containers to be exported into single file tar archives.
These cannot be run directly, but are intended to be imported into
Docker to run at a later date, or another location. SingularityCE can
build from (or run) these archive files, by extracting them as part of
the build process.

If an image is listed by the docker images command, then we can
create a tar archive file using docker save and the image ID:

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
sylabsio/lolcow latest 5a15b484bc65 2 hours ago 188MB

$ docker save 5a15b484bc65 -o lolcow.tar

If we examine the contents of the tar file we can see that it contains
the layers and metadata that make up a Docker container:

$ tar tvf lolcow.tar
drwxr-xr-x 0 0 0 0 Aug 16 11:22 2f0514a4c044af1ff4f47a46e14b6d46143044522fcd7a9901124209d16d6171/
-rw-r--r-- 0 0 0 3 Aug 16 11:22 2f0514a4c044af1ff4f47a46e14b6d46143044522fcd7a9901124209d16d6171/VERSION
-rw-r--r-- 0 0 0 401 Aug 16 11:22 2f0514a4c044af1ff4f47a46e14b6d46143044522fcd7a9901124209d16d6171/json
-rw-r--r-- 0 0 0 75156480 Aug 16 11:22 2f0514a4c044af1ff4f47a46e14b6d46143044522fcd7a9901124209d16d6171/layer.tar
-rw-r--r-- 0 0 0 1499 Aug 16 11:22 5a15b484bc657d2b418f2c20628c29945ec19f1a0c019d004eaf0ca1db9f952b.json
drwxr-xr-x 0 0 0 0 Aug 16 11:22 af7e389ea6636873dbc5adc17826e8401d96d3d384135b2f9fe990865af202ab/
-rw-r--r-- 0 0 0 3 Aug 16 11:22 af7e389ea6636873dbc5adc17826e8401d96d3d384135b2f9fe990865af202ab/VERSION
-rw-r--r-- 0 0 0 946 Aug 16 11:22 af7e389ea6636873dbc5adc17826e8401d96d3d384135b2f9fe990865af202ab/json
-rw-r--r-- 0 0 0 118356480 Aug 16 11:22 af7e389ea6636873dbc5adc17826e8401d96d3d384135b2f9fe990865af202ab/layer.tar
-rw-r--r-- 0 0 0 266 Dec 31 1969 manifest.json

We can convert this tar file into a singularity container using the
docker-archive bootstrap agent. Because the agent accesses a file,
rather than an object hosted by a service, it uses :<filename>, not
://<location>. To build a tar archive directly to a SIF container:

$ singularity build lolcow_tar.sif docker-archive:lolcow.tar
INFO: Starting build...
Getting image source signatures
Copying blob sha256:2f0514a4c044af1ff4f47a46e14b6d46143044522fcd7a9901124209d16d6171
 119.83 MiB / 119.83 MiB [==] 6s
Copying blob sha256:af7e389ea6636873dbc5adc17826e8401d96d3d384135b2f9fe990865af202ab
 15.50 KiB / 15.50 KiB [==] 0s
Copying config sha256:5a15b484bc657d2b418f2c20628c29945ec19f1a0c019d004eaf0ca1db9f952b
 3.33 KiB / 3.33 KiB [==] 0s
Writing manifest to image destination
Storing signatures
INFO: Creating SIF file...
INFO: Build complete: lolcow_tar.sif

Note

The docker-archive bootstrap agent can also handle gzipped Docker
archives (.tar.gz or .tgz files).

To build an image using a definition file, which starts from a container
in a Docker archive, use Bootstrap: docker-archive and specify the
filename in the From: line:

Bootstrap: docker-archive
From: lolcow.tar

Differences and Limitations vs Docker

Though Docker / OCI container compatibility is a goal of SingularityCE,
there are some differences and limitations due to the way SingularityCE
was designed to work well on shared systems and HPC clusters. If you are
having difficulty running a specific Docker container, check through the
list of differences below. There are workarounds for many of the issues
that you are most likely to face.

Read-only by Default

SingularityCE’s container image format (SIF) is generally read-only.
This permits containers to be run in parallel from a shared location on
a network filesystem, support in-built signing and verification, and
offer encryption. A container’s filesystem is mounted directly from the
SIF, as SquashFS, so cannot be written to by default.

When a container is run using Docker its layers are extracted, and the
resulting container filesystem can be written to and modified by
default. If a Docker container expects to write files, you will need to
follow one of the following methods to allow it to run under
SingularityCE.

	A directory from the host can be passed into the container with the
--bind or --mount flags. It needs to be mounted inside the
container at the location where files will be written.

	The --writable-tmpfs flag can be used to allow files to be
created in a special temporary overlay. Any changes are lost when the
container exits. The SIF file is never modified.

	The container can be converted to a sandbox directory, and executed
with the --writable flag, which allows modification of the
sandbox content.

	A writable overlay partition can be added to the SIF file, and the
container executed with the --writable flag. Any changes made are
kept permanently in the overlay partition.

Of these methods, only --writable-tmpfs is always safe to run in
parallel. Each time the container is executed, a separate temporary
overlay is used and then discarded.

Binding a directory into a container, or running a writable sandbox may
or may not be safe, depending on the program executed. The program must
use, and the filesystem support, some type of locking in order that the
parallel runs do not interfere.

A writable overlay file in a SIF partition cannot be used in parallel.
SingularityCE will refuse to run concurrently using the same SIF
writable overlay partition.

Dockerfile USER

The Dockerfile used to build a Docker container may contain a
USER statement. This tells the container runtime that it should run
the container under the specified user account.

Because SingularityCE is designed to provide easy and safe access to
data on the host system, work under batch schedulers, etc., it does not
permit changing the user account the container is run as.

Any USER statement in a Dockerfile will be ignored by
SingularityCE when the container is run. In practice, this often does
not affect the execution of the software in the container. Software that
is written in a way that requires execution under a specific user
account will generally require modification for use with SingularityCE.

SingularityCE’s --fakeroot mode will start a container as a fake
root user, mapped to the user’s real account outside of the
container. Inside the container it is possible to change to another user
account, which is mapped to a configured range of sub-uids / gids
belonging to the original user. It may be possible to execute software
expecting a fixed user account manually inside a --fakeroot shell,
if your adminstrator has configured the system for --fakeroot.

Default Mounts / $HOME

A default installation of SingularityCE will mount the user’s home
directory, /tmp directory, and the current working directory, into
each container that is run. Administrators may also configure e.g. HPC
project directories to automatically bind mount. Docker does not mount
host directories into the container by default.

The home directory mount is the most likely to cause problems when
running Docker containers. Various software will look for packages,
plugins, and configuration files in $HOME. If you have, for example,
installed packages for Python into your home directory (pip install
--user) then a Python container may find and attempt to use them. This
can cause conflicts and unexpected behavior.

If you experience issues, use the --contain option to stop
SingularityCE automatically binding directories into the container. You
may need to use --bind or --mount to then add back e.g. an HPC
project directory that you need access to.

Without --contain, python in the container finds packages
in your $HOME directory.
$ singularity exec docker://python:3.9 pip list
Package Version
---------- -------
pip 21.2.4
rstcheck 3.3.1
setuptools 57.5.0
wheel 0.37.0

With --contain, python in the container only finds packages
installed in the container.
$ singularity exec --contain docker://python:3.9 pip list
Package Version
---------- -------
pip 21.2.4
setuptools 57.5.0
wheel 0.37.0

Environment Propagation

SingularityCE propagates most environment variables set on the host into
the container, by default. Docker does not propagate any host
environment variables into the container. Environment variables may
change the behaviour of software.

To disable automatic propagation of environment variables, the
--cleanenv / -e flag can be specified. When --cleanenv is used,
only variables on the host that are prefixed with SINGULARITYENV_
are set in the container:

Set a host variable
$ export HOST_VAR=123
Set a singularity container environment variable
$ export "SINGULARITYENV_FORCE_VAR="123"

$ singularity run library://alpine env | grep VAR
FORCE_VAR=123
HOST_VAR=ABC

$ singularity run --cleanenv library://alpine env | grep VAR
FORCE_VAR=123

Any environment variables set via an ENV line in a Dockerfile will be
available when the container is run with SingularityCE. You can override them
with SINGULARITYENV_ vars, or the --env / --env-file flags, but they
will not be overridden by host environment variables.

For example, the docker://openjdk:latest container sets JAVA_HOME:

Set a host JAVA_HOME
export JAVA_HOME=/test

Check JAVA_HOME in the docker container.
This value comes from ENV in the Dockerfile.
$ singularity run docker://openjdk:latest echo \$JAVA_HOME
/usr/java/openjdk-17

Override JAVA_HOME in the container
export SINGULARITYENV_JAVA_HOME=/test
$ singularity run docker://openjdk:latest echo \$JAVA_HOME
/test

Environment Variable Escaping / Evaluation

The default behavior of SingularityCE differs from Docker/OCI handling of
environment variables as SingularityCE uses a shell interpreter to process
environment on container startup, in a manner that evaluates environment
variables. To avoid the extra evaluation of variables that SingularityCE
performs you can:

	Follow the instructions in the Escaping and Evaluation of Environment Variables section to
explictly escape environment variables.

	Use the --no-eval flag.

--no-eval prevents SingularityCE from evaluating environment variables on
container startup, so that they will take the same value as with a Docker/OCI
runtime:

Set an environment variable that would run `date` if evaluated
$ export SINGULARITYENV_MYVAR='$(date)'

Default behavior
MYVAR was evaluated in the container, and is set to the output of `date`
$ singularity run ~/ubuntu_latest.sif env | grep MYVAR
MYVAR=Tue Apr 26 14:37:07 CDT 2022

--no-eval / --compat behavior
MYVAR was not evaluated and is a literal `$(date)`
$ singularity run --no-eval ~/ubuntu_latest.sif env | grep MYVAR
MYVAR=$(date)

Namespace & Device Isolation

Because SingularityCE favors an integration over isolation approach it
does not, by default, use all the methods through which a container can
be isolated from the host system. This makes it much easier to run a
SingularityCE container like any other program, while the unique
security model ensures safety. You can access the host’s network, GPUs,
and other devices directly. Processes in the container are not numbered
separately from host processes. Hostnames are not changed, etc.

Most containers are not impacted by the differences in isolation. If you
require more isolation, than SingularityCE provides by default, you can
enable some of the extra namespaces that Docker uses, with flags:

	--ipc / -i creates a separate IPC (inter process communication)
namespace, for SystemV IPC objects and POSIX message queues.

	--net / -n creates a new network namespace, abstracting the
container networking from the host.

	--userns / -u runs the container unprivileged, inside a user namespace
and avoiding SingularityCE’s setuid setup code. By default, SIF container
images will be extracted to disk, as mounting the container filesystem from
the SIF requires privilege. An experimental --sif-fuse flag can be used
to perform a mount with squashfuse instead, if it is available on your
system.

	--uts creates a new UTS namespace, which allows a different
hostname and/or NIS domain for the container.

To limit presentation of devices from the host into the container, use
the --contain flag. As well as preventing automatic binds of host
directories into the container, --contain sets up a minimal /dev
directory, rather than binding in the entire host /dev tree.

Note

When using the --nv or --rocm flags, GPU devices are present
in the container even when --contain is used.

Init Shim Process

When a SingularityCE container is run using the --pid / p option, or
started as an instance (which implies --pid), a shim init process is
executed that will run the container payload itself.

The shim process helps to ensure signals are propagated correctly from
the terminal, or batch schedulers etc. when containers are not designed
for interactive use. Because Docker does not provide an init process by
default, some containers have been designed to run their own init
process, which cannot operate under the control of SingularityCE’s shim.

For example, a container using the tini init process will produce
warnings when started as an instance, or if run with --pid. To work
around this, use the --no-init flag to disable the shim:

$ singularity run --pid tini_example.sif
[WARN tini (2690)] Tini is not running as PID 1 .
Zombie processes will not be re-parented to Tini, so zombie reaping won't work.
To fix the problem, run Tini as PID 1.

$ singularity run --pid --no-init tini_example.sif
...
NO WARNINGS

Docker-like --compat Flag

If Docker-like behavior is important, SingularityCE can be started with
the --compat flag. This flag is a convenient short-hand alternative
to using all of:

	--containall

	--no-init

	--no-umask

	--writable-tmpfs

	--no-eval

A container run with --compat has:

	A writable root filesystem, using a temporary overlay where changes
are discarded at container exit.

	No automatic bind mounts of $HOME or other directories from the
host into the container.

	Empty temporary $HOME and /tmp directories, the contents of
which will be discarded at container exit.

	A minimal /dev tree, that does not expose host devices inside the
container (except GPUs when used with --nv or --rocm).

	A clean environment, not including environment variables set on the
host.

	Its own PID and IPC namespaces.

	No shim init process.

	Argument and environment variable handling matching Docker / OCI runtimes,
with respect to evaluation and escaping.

These options will allow most, but not all, Docker / OCI containers to
execute correctly under SingularityCE. The user namespace and network
namespace are not used, as these negate benefits of SIF and direct
access to high performance cluster networks.

CMD / ENTRYPOINT Behaviour

When a container is run using docker, its default behavior depends
on the CMD and/or ENTRYPOINT set in the Dockerfile that was
used to build it, along with any arguments on the command line. The
CMD and ENTRYPOINT can also be overridden by flags.

A SingularityCE container has the concept of a runscript, which is a
single shell script defining what happens when you singularity run
the container. Because there is no internal concept of CMD and
ENTRYPOINT, SingularityCE must create a runscript from the CMD
and ENTRYPOINT when converting a Docker container. The behavior of
this script mirrors Docker as closely as possible.

If the Docker container only has an ENTRYPOINT - that ENTRYPOINT
is run, with any arguments appended:

ENTRYPOINT="date"

Runs 'date'
$ singularity run mycontainer.sif
Wed 06 Oct 2021 02:42:54 PM CDT

Runs 'date --utc`
$ singularity run mycontainer.sif --utc
Wed 06 Oct 2021 07:44:27 PM UTC

If the Docker container only has a CMD - the CMD is run, or is
replaced with any arguments:

CMD="date"

Runs 'date'
$ singularity run mycontainer.sif
Wed 06 Oct 2021 02:45:39 PM CDT

Runs 'echo hello'
$ singularity run mycontainer.sif echo hello
hello

If the Docker container has a CMD and ENTRYPOINT, then we run
ENTRYPOINT with either CMD as default arguments, or replaced
with any user supplied arguments:

ENTRYPOINT="date"
CMD="--utc"

Runs 'date --utc'
$ singularity run mycontainer.sif
Wed 06 Oct 2021 07:48:43 PM UTC

Runs 'date -R'
$ singularity run mycontainer.sif -R
Wed, 06 Oct 2021 14:49:07 -0500

There is no flag to override an ENTRYPOINT set for a Docker
container. Instead, use singularity exec to run an arbitrary program
inside a container.

Argument Handling

Because SingularityCE runscripts are evaluated shell scripts, arguments can
behave slightly differently than in Docker/OCI runtimes if they contain shell
code that may be evaluated.

If you are using a container that was directly built or run from a Docker/OCI
source, with SingularityCE 3.10 or later, the --no-eval flag will prevent
this extra evaluation so that arguments are handled in a compatible manner:

docker/OCI behavior
$ docker run -it --rm alpine echo "\$HOSTNAME"
$HOSTNAME

Singularity default
$ singularity run docker://alpine echo "\$HOSTNAME"
p700

Singularity with --no-eval
$ singularity run --no-eval docker://alpine echo "\$HOSTNAME"
$HOSTNAME

Note

--no-eval will not change argument behavior for containers built with
SingularityCE 3.9 or earlier, as the handling is implemented in the runscript
that is built into the container.

You can check the version of SingularityCE used to build a container with
singularity inspect mycontainer.sif.

To avoid evaluation without --no-eval, and when using containers built with
SingularityCE 3.9 or earlier, you will need to add an extra level of shell
escaping to arguments on the command line:

$ docker run -it --rm alpine echo "\$HOSTNAME"
$HOSTNAME

$ singularity run docker://alpine echo "\$HOSTNAME"
p700

$ singularity run docker://alpine echo "\\\$HOSTNAME"
$HOSTNAME

If you are running a binary inside a docker:// container directly,
using the exec command, the argument handling mirrors Docker/OCI
runtimes as there is no evaluated runscript.

Best Practices for Docker & SingularityCE Compatibility

As detailed previously, SingularityCE can make use of most Docker and
OCI images without issues, or via simple workarounds. In general,
however, there are some best practices that should be applied when
creating Docker / OCI containers that will also be run using
SingularityCE.

	Don’t require execution by a specific user

Avoid using the USER instruction in your Docker file, as it is
ignored by Singularity. Install and configure software inside the
container so that it can be run by any user.

	Don’t install software under /root or in another user’s home
directory

Because a Docker container builds and runs as the root user by
default, it’s tempting to install software into root’s home directory
(/root). Permissions on /root are usually set so that it is
inaccessible to non-root users. When the container is run as another
user the software may be inaccessible.

Software inside another user’s home directory, e.g. /home/myapp,
may be obscured by SingularityCE’s automatic mounts onto /home.

Install software into system-wide locations in the container, such as
under /usr or /opt to avoid these issues.

	Support a read-only filesystem

Because of the immutable nature of the SIF format, a container run
with SingularityCE is read-only by default.

Try to ensure your container will run with a read-only filesystem. If
this is not possible, document exactly where the container needs to
write, so that a user can bind in a writable location, or use
--writable-tmpfs as appropriate.

You can test read-only execution with Docker using docker run
--read-only --tmpfs /run --tmpfs /tmp sylabsio/lolcow.

	Be careful writing to /tmp

SingularityCE mounts the host /tmp into the container, by
default. This means you must be be careful when writing sensitive
information to /tmp, and should ensure your container cleans up
files it writes there.

	Consider library caches / ldconfig

If your Dockerfile adds libraries and / or manipulates the ld
search path in the container (ld.so.conf / ld.so.conf.d), you
should ensure the library cache is updated during the build.

Because Singularity runs containers read-only by default, the cache
and any missing library symlinks may not be able to be updated /
created at execution time.

Run ldconfig toward the end of your Dockerfile to ensure
symbolic links and the the ld.so.cache are up-to-date.

Troubleshooting

Registry Authentication Issues

If you experience problems pulling containers from a private registry,
check your credentials carefully. You can singularity pull with the
--docker-login flag to perform an interactive login. This may be
useful if you are unsure whether you have stored credentials properly
via singularity remote login or docker login.

OCI registries expect different values for username and password fields.
Some require a token to be generated and used instead of your account
password. Some take a generic username, and rely only on the token to
identify you. Consult the documentation for your registry carefully.
Look for instructions that detail how to login via docker login
without external helper programs, if possible.

Container Doesn’t Start

If a Docker container fails to start, the most common cause is that it
needs to write files, while SingularityCE runs read-only by default.

Try running with the --writable-tmpfs option, or the --compat
flag (which enables additional compatibility fixes).

You can also look for error messages mentioning ‘permission denied’ or
‘read-only filesystem’. Note where the program is attempting to write,
and use --bind or --mount to bind a directory from the host
system into that location. This will allow the container to write the
needed files, which will appear in the directory you bind in.

Unexpected Container Behaviour

If a Docker container runs, but exhibits unexpected behavior, the most
likely cause is the different level of isolation that Singularity
provides vs Docker.

Try running the container with the --contain option, or the
--compat option (which is more strict). This disables the automatic
mount of your home directory, which is a common source of issues where
software in the container loads configuration or packages that may be
present there.

Getting Help

The community Slack channels and mailing list are excellent places to
ask for help with running a specific Docker container. Other users may
have already had success running the same container or software. Please
don’t report issues with specific Docker containers on GitHub, unless
you believe they are due to a bug in SingularityCE.

SingularityCE Definition file vs. Dockerfile

An alternative to running Docker containers with SingularityCE is to
re-write the Dockerfile as a definition file, and build a native SIF
image.

The table below gives a quick reference comparing Dockerfile and
SingularityCE definition files. For more detail please see
Definition Files.

	SingularityCE Definition file

	Dockerfile

	Section

	Description

	Section

	Description

	Bootstrap

	
Defines the source of

the base image to build

your container from.

Many bootstrap agents

are supported, e.g.

library, docker,

http, shub,

yum, debootstrap.

	-

	
Can only bootstrap

from Docker Hub.

	From:

	
Specifies the base

image from which to the

build the container.

	FROM

	
Creates a layer from

the specified docker image.

	%setup

	
Run setup commands

outside of the

container (on the host

system) after the base

image bootstrap.

	-

	
Not supported.

	%files

	
Copy files from

your host to

the container, or

between build stages.

	COPY

	
Copy files from

your host to

the container, or

between build stages.

	%environment

	
Declare and set

container environment

variables.

	ENV

	
Declare and set

a container environment

variable.

	%help

	
Provide a help

section for your

container image.

	-

	
Not supported.

	%post

	
Commands that will

be run at

build-time.

	RUN

	
Commands that will

be run at

build-time.

	%runscript`

	
Commands that will

be run when you

singularity run

the container image.

	ENTRYPOINT
CMD

	
Commands / arguments

that will run in the

container image.

	%startscript

	
Commands that will

be run when

an instance is started.

	-

	
Not Applicable.

	%test

	
Commands that run

at the very end

of the build process

to validate the

container using

a method of your

choice. (to verify

distribution or

software versions

installed inside

the container)

	HEALTHCHECK

	
Commands that verify

the health status of

the container.

	%apps

	
Allows you to install

internal modules

based on the concept

of SCIF-apps.

	-

	
Not supported.

	%labels

	
Section to add and

define metadata

describing your

container.

	LABEL

	
Declare container

metadata as a

key-value pair.

OCI Runtime Support

Overview

The Open Containers Initiative [https://www.opencontainers.org/] is an
independent organization whose mandate is to develop open standards relating to
containerization. There are three OCI specifications covering the OCI container
image format, distribution methods for containers, and the behaviour of
compliant container runtimes.

The OCI specifications inherited from the historic behaviour of Docker, and have
been refined over time. The majority of container runtimes, and tools that work
with containers on Linux follow the OCI standards.

SingularityCE was initially developed to address difficulties with using Docker
in shared HPC compute environments. A development goal is to allow users to work
with Docker/OCI containers where Docker or other OCI runtimes cannot easily be
deployed, for various reasons.

OCI Spec Support

OCI Image Spec - SingularityCE can convert container images that satisfy the
OCI Image Specification into its own SIF format, or a simple sandbox directory.
Most of the configuration that a container image can specify is supported by the
SingularityCE runtime, but there are some limitations, and workarounds required for certain container
images.

OCI Distribution Spec - SingularityCE is able to pull images from registries
that satisfy the OCI Distribution Specification.

OCI Runtime Spec - By default, SingularityCE does not follow the OCI Runtime
Specification closely. Instead, it uses its own runtime that is better matched
to the requirements and limitations of multi-user shared compute environments.
The singularity oci commands were added to provide a mode of operation in
which SingularityCE does implement the OCI runtime specification and container
lifecycle. These commands are primarily of interest to tooling that might use
SingularityCE as a container runtime, rather than end users.

Future Development

As newer Linux kernels and system software reach production environments, many
of the limitations that required SingularityCE to operate quite differently from
OCI runtimes are becoming less-applicable. Over future releases, SingularityCE
development will bring greater OCI compliance for typical usage, while
maintaining the same ease-of-use and application focus.

You can read more about these plans in the following article and open community
roadmap:

	https://sylabs.io/2022/02/singularityce-4-0-and-beyond/

	https://github.com/sylabs/singularityce-community

OCI Command Group

To run Singularity containers in an OCI Runtime Spec compliant manner, you can
use the oci command group.

Note

All commands in the oci command group currently require root
privileges.

OCI containers follow a different lifecycle to containers that are run with
singularity run/shell/exec. Rather than being a simple process that starts,
and exits, they are created, run, killed, and deleted. This is similar to
instances. Additionally, containers must be run from an OCI bundle, which is a
specific directory structure that holds the container’s root filesystem and
configuration file. To run a SingularityCE SIF image, you must mount it into a
bundle.

Mounting an OCI Filesystem Bundle

Let’s work with a busybox container image, pulling it down with the default
busybox_latest.sif filename:

$ singularity pull library://busybox
INFO: Downloading library image
773.7KiB / 773.7KiB [===] 100 % 931.4 KiB/s 0s

Now use singularity oci mount to create an OCI bundle onto which the SIF is
mounted:

$ sudo singularity oci mount ./busybox_latest.sif /var/tmp/busybox

By issuing the mount command, the root filesystem encapsulated in the SIF
file busybox_latest.sif is mounted on /var/tmp/busybox with an overlay
setup to hold any changes, as the SIF file is read-only.

Content of an OCI Compliant Filesystem Bundle

The OCI bundle, created by the mount command consists of the following files and
directories:

	config.json - a generated OCI container configuration file, which
instructs the OCI runtime how to run the container, which filesystems to bind
mount, what environment to set, etc.

	overlay/ - a directory that holds the contents of the bundle overlay - any
new files, or changed files, that differ from the content of the read-only SIF
container image.

	rootfs/ - a directory containing the mounted root filesystem from the SIF
container image, with its overlay.

	volumes/ - a directory used by the runtime to stage any data mounted into
the container as a volume.

OCI config.json

The container configuration file, config.json in the OCI bundle, is
generated by singularity mount with generic default options. It may not
reflect the config.json used by an OCI runtime working directly from a
native OCI image, rather than a mounted SIF image.

You can inspect and modify config.json according to the OCI runtime
specification [https://github.com/opencontainers/runtime-spec/blob/main/config.md] to
influence the behavior of the container.

Running a Container

For simple interactive use, the oci run command will create and start a
container instance, attaching to it in the foreground. This is similar to the
way singularity run works, with SingularityCE’s native runtime engine:

$ sudo singularity oci run -b /var/tmp/busybox busybox1
/ # echo "Hello"
Hello
/ # exit

When the process running in the container (in this case a shell) exits, the
container is automatically cleaned up, but note that the OCI bundle remains
mounted.

Full Container Lifecycle

If you want to run a detached background service, or interact with SIF
containers from 3rd party tools that are compatibile with OCI runtimes, you will
step through the container lifecycle using a number of oci subcommands.
These move the container between different states in the lifecycle.

Once an OCI bundle is available, you can create a instance of the container with
the oci create subcommand:

$ sudo singularity oci create -b /var/tmp/busybox busybox1
INFO: Container busybox1 created with PID 20105

At this point the runtime has prepared container processes, but the payload
(CMD / ENTRYPOINT or runscript) has not been started.

Check the state of the container using the oci state subcommand:

$ sudo singularity oci state busybox1
{
 "ociVersion": "1.0.2-dev",
 "id": "busybox1",
 "pid": 20105,
 "status": "created",
 "bundle": "/var/tmp/busybox",
 "rootfs": "/var/tmp/busybox/rootfs",
 "created": "2022-04-27T15:39:08.751705502Z",
 "owner": ""
}

Start the container’s CMD/ENTRYPOINT or runscript with the oci
start command:

$ singularity start busybox1

There is no output, but if you check the container state it will now be
running. The container is detached. To view output or provide input we
will need to attach to its input and output streams. with the oci attach
command:

$ sudo singularity oci attach busybox1
/ # date
date
Wed Apr 27 15:45:27 UTC 2022
/ #

When finished with the container, first oci kill running processes, than
oci delete the container instance:

$ sudo singularity oci kill busybox1
$ sudo singularity oci delete busybox1

Unmounting OCI Filesystem Bundles

When you are finished with an OCI bundle, you will need to explicitly unmount
it using the oci umount subcommand:

$ sudo singularity oci umount /var/tmp/busybox

Technical Implementation

SingularityCE 3.10 uses runc [https://github.com/opencontainers/runc] as the
low-level runtime engine to execute containers in an OCI Runtime Spec compliant
manner. runc is expected to be provided by your Linux distribution.

To manage container i/o streams and attachment, conmon [https://github.com/containers/conmon] is used. SingularityCE ships with a
suitable version of conmon to support the oci command group.

In SingularityCE 3.9 and prior, SingularityCE’s own low-level runtime was
employed for oci operations. This was retired to simplify maintenance,
improve OCI compliance, and make possible future development in the roadmap to
4.0.

SingularityCE and MPI applications

The Message Passing Interface (MPI) [https://mpi-forum.org] is a
standard extensively used by HPC applications to implement various
communication across compute nodes of a single system or across compute
platforms. There are two main open-source implementations of MPI at the
moment - OpenMPI [https://www.open-mpi.org/] and MPICH [https://www.mpich.org/], both of which are supported by
SingularityCE. The goal of this page is to demonstrate the development
and running of MPI programs using SingularityCE containers.

There are several ways of carrying this out, the most popular way of
executing MPI applications installed in a SingularityCE container is to
rely on the MPI implementation available on the host. This is called the
Host MPI or the Hybrid model since both the MPI implementations
provided by system administrators (on the host) and in the containers
will be used.

Another approach is to only use the MPI implementation available on the
host and not include any MPI in the container. This is called the Bind
model since it requires to bind/mount the MPI version available on the
host into the container.

Note

The bind model requires users to be able to mount user-specified
files from the host into the container. This ability is sometimes
disabled by system administrators for operational reasons. If this is
the case on your system please follow the hybrid approach.

Hybrid model

The basic idea behind the Hybrid Approach is when you execute a
SingularityCE container with MPI code, you will call mpiexec or a
similar launcher on the singularity command itself. The MPI process
outside of the container will then work in tandem with MPI inside the
container and the containerized MPI code to instantiate the job.

The Open MPI/SingularityCE workflow in detail:

	The MPI launcher (e.g., mpirun, mpiexec) is called by the
resource manager or the user directly from a shell.

	Open MPI then calls the process management daemon (ORTED).

	The ORTED process launches the SingularityCE container requested by
the launcher command.

	SingularityCE instantiates the container and namespace environment.

	SingularityCE then launches the MPI application within the container.

	The MPI application launches and loads the Open MPI libraries.

	The Open MPI libraries connect back to the ORTED process via the
Process Management Interface (PMI).

At this point the processes within the container run as they would
normally directly on the host.

	The advantages of this approach are:
	
	Integration with resource managers such as Slurm.

	Simplicity since similar to natively running MPI applications.

	The drawbacks are:
	
	The MPI in the container must be compatible with the version of
MPI available on the host.

	The MPI implementation in the container must be carefully
configured for optimal use of the hardware if performance is
critical.

Since the MPI implementation in the container must be compliant with the
version available on the host system, a standard approach is to build
your own MPI container, including building the same MPI framework
installed on the host from source.

Test Application

To illustrate how SingularityCE can be used to execute MPI applications,
we will assume for a moment that the application is mpitest.c, a
simple Hello World:

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char **argv) {
 int rc;
 int size;
 int myrank;

 rc = MPI_Init (&argc, &argv);
 if (rc != MPI_SUCCESS) {
 fprintf (stderr, "MPI_Init() failed");
 return EXIT_FAILURE;
 }

 rc = MPI_Comm_size (MPI_COMM_WORLD, &size);
 if (rc != MPI_SUCCESS) {
 fprintf (stderr, "MPI_Comm_size() failed");
 goto exit_with_error;
 }

 rc = MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
 if (rc != MPI_SUCCESS) {
 fprintf (stderr, "MPI_Comm_rank() failed");
 goto exit_with_error;
 }

 fprintf (stdout, "Hello, I am rank %d/%d\n", myrank, size);

 MPI_Finalize();

 return EXIT_SUCCESS;

 exit_with_error:
 MPI_Finalize();
 return EXIT_FAILURE;
}

Note

MPI is an interface to a library, so it consists of function calls
and libraries that can be used by many programming languages. It
comes with standardized bindings for Fortran and C. However, it can
support applications in many languages like Python, R, etc.

The next step is to create the definition file used to build the
container, which will depend on the MPI implementation available on the
host.

MPICH Hybrid Container

If the host MPI is MPICH, a definition file such as the following
example can be used:

Bootstrap: docker
From: ubuntu:18.04

%files
 mpitest.c /opt

%environment
 # Point to MPICH binaries, libraries man pages
 export MPICH_DIR=/opt/mpich-3.3.2
 export PATH="$MPICH_DIR/bin:$PATH"
 export LD_LIBRARY_PATH="$MPICH_DIR/lib:$LD_LIBRARY_PATH"
 export MANPATH=$MPICH_DIR/share/man:$MANPATH

%post
 echo "Installing required packages..."
 export DEBIAN_FRONTEND=noninteractive
 apt-get update && apt-get install -y wget git bash gcc gfortran g++ make

 # Information about the version of MPICH to use
 export MPICH_VERSION=3.3.2
 export MPICH_URL="http://www.mpich.org/static/downloads/$MPICH_VERSION/mpich-$MPICH_VERSION.tar.gz"
 export MPICH_DIR=/opt/mpich

 echo "Installing MPICH..."
 mkdir -p /tmp/mpich
 mkdir -p /opt
 # Download
 cd /tmp/mpich && wget -O mpich-$MPICH_VERSION.tar.gz $MPICH_URL && tar xzf mpich-$MPICH_VERSION.tar.gz
 # Compile and install
 cd /tmp/mpich/mpich-$MPICH_VERSION && ./configure --prefix=$MPICH_DIR && make install

 # Set env variables so we can compile our application
 export PATH=$MPICH_DIR/bin:$PATH
 export LD_LIBRARY_PATH=$MPICH_DIR/lib:$LD_LIBRARY_PATH

 echo "Compiling the MPI application..."
 cd /opt && mpicc -o mpitest mpitest.c

Note

The version of MPICH you install in the container must be compatible
with the version on the host. It should also be configured to support
the same process management mechanism and version, e.g. PMI2 / PMIx,
as used on the host.

There are wide variations in MPI configuration across HPC systems.
Consult your system documentation, or ask your support staff for
details.

Open MPI Hybrid Container

If the host MPI is Open MPI, the definition file looks like:

Bootstrap: docker
From: ubuntu:18.04

%files
 mpitest.c /opt

%environment
 # Point to OMPI binaries, libraries, man pages
 export OMPI_DIR=/opt/ompi
 export PATH="$OMPI_DIR/bin:$PATH"
 export LD_LIBRARY_PATH="$OMPI_DIR/lib:$LD_LIBRARY_PATH"
 export MANPATH="$OMPI_DIR/share/man:$MANPATH"

%post
 echo "Installing required packages..."
 apt-get update && apt-get install -y wget git bash gcc gfortran g++ make file

 echo "Installing Open MPI"
 export OMPI_DIR=/opt/ompi
 export OMPI_VERSION=4.0.5
 export OMPI_URL="https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-$OMPI_VERSION.tar.bz2"
 mkdir -p /tmp/ompi
 mkdir -p /opt
 # Download
 cd /tmp/ompi && wget -O openmpi-$OMPI_VERSION.tar.bz2 $OMPI_URL && tar -xjf openmpi-$OMPI_VERSION.tar.bz2
 # Compile and install
 cd /tmp/ompi/openmpi-$OMPI_VERSION && ./configure --prefix=$OMPI_DIR && make -j8 install

 # Set env variables so we can compile our application
 export PATH=$OMPI_DIR/bin:$PATH
 export LD_LIBRARY_PATH=$OMPI_DIR/lib:$LD_LIBRARY_PATH

 echo "Compiling the MPI application..."
 cd /opt && mpicc -o mpitest mpitest.c

Note

The version of Open MPI you install in the container must be
compatible with the version on the host. It should also be configured
to support the same process management mechanism and version, e.g.
PMI2 / PMIx, as used on the host.

There are wide variations in MPI configuration across HPC systems.
Consult your system documentation, or ask your support staff for
details.

Running an MPI Application

The standard way to execute MPI applications with hybrid SingularityCE
containers is to run the native mpirun command from the host, which
will start SingularityCE containers and ultimately MPI ranks within the
containers.

Assuming your container with MPI and your application is already built,
the mpirun command to start your application looks like when your
container has been built based on the hybrid model:

$ mpirun -n <NUMBER_OF_RANKS> singularity exec <PATH/TO/MY/IMAGE> </PATH/TO/BINARY/WITHIN/CONTAINER>

Practically, this command will first start a process instantiating
mpirun and then SingularityCE containers on compute nodes. Finally,
when the containers start, the MPI binary is executed:

$ mpirun -n 8 singularity run hybrid-mpich.sif /opt/mpitest
Hello, I am rank 3/8
Hello, I am rank 4/8
Hello, I am rank 6/8
Hello, I am rank 2/8
Hello, I am rank 0/8
Hello, I am rank 5/8
Hello, I am rank 1/8
Hello, I am rank 7/8

Bind model

Similar to the Hybrid Approach, the basic idea behind the Bind
Approach is to start the MPI application by calling the MPI launcher
(e.g., mpirun) from the host. The main difference between the hybrid
and bind approach is the fact that with the bind approach, the container
usually does not include any MPI implementation. This means that
SingularityCE needs to mount/bind the MPI available on the host into the
container.

Technically this requires two steps:

	Know where the MPI implementation on the host is installed.

	Mount/bind it into the container in a location where the system will
be able to find libraries and binaries.

	The advantages of this approach are:
	
	Integration with resource managers such as Slurm.

	Container images are smaller since there is no need to add an MPI
in the containers.

	The drawbacks are:
	
	The MPI used to compile the application in the container must be
compatible with the version of MPI available on the host.

	The user must know where the host MPI is installed.

	The user must ensure that binding the directory where the host MPI
is installed is possible.

	The user must ensure that the host MPI is compatible with the MPI
used to compile and install the application in the container.

The creation of a SingularityCE container for the bind model is based on
the following steps:

	Compile your application on a system with the target MPI
implementation, as you would do to install your application on any
system.

	Create a definition file that includes the copy of the application
from the host to the container image, as well as all required
dependencies.

	Generate the container image.

As already mentioned, the compilation of the application on the host is
not different from the installation of your application on any system.
Just make sure that the MPI on the system where you create your
container is compatible with the MPI available on the platform(s) where
you want to run your containers. For example, a container where the
application has been compiled with MPICH will not be able to run on a
system where only Open MPI is available, even if you mount the directory
where Open MPI is installed.

Bind Mode Definition File

A definition file for a container in bind mode is fairly straight
forward. The following example shows the definition file for the test
program, which in this case has been compiled on the host to
/tmp/mpitest:

Bootstrap: docker
From: ubuntu:18.04

%files
 /tmp/mpitest /opt/mpitest

%environment
 export PATH="$MPI_DIR/bin:$PATH"
 export LD_LIBRARY_PATH="$MPI_DIR/lib:$LD_LIBRARY_PATH"

In this example, the application mpitest is copied from the host
into /opt, so we will need to run it as /opt/mpitest inside our
container.

The environment section adds paths for binaries and libraries under
$MPI_DIR - which we will need to set when running the container.

Running an MPI Application

When running our bind mode container we need to --bind our host’s
MPI installation into the container. We also need to set the environment
variable $MPI_DIR in the container to point to the location where
the MPI installation is bound in.

Setting up the container in this way makes it semi-portable between
systems that have a version-compatible MPI installation, but under
different installation paths. You can also hard code the MPI path in the
definition file if you wish.

$ export MPI_DIR="<PATH/TO/HOST/MPI/DIRECTORY>"
$ mpirun -n <NUMBER_OF_RANKS> singularity exec --bind "$MPI_DIR" <PATH/TO/MY/IMAGE> </PATH/TO/BINARY/WITHIN/CONTAINER>

On an example system we may be using an Open MPI installation at
/cm/shared/apps/openmpi/gcc/64/4.0.5/. This means that the commands
to run the container in bind mode are:

$ export MPI_DIR="/cm/shared/apps/openmpi/gcc/64/4.0.5"
$ mpirun -n 8 singularity exec --bind "$MPI_DIR" bind.sif /opt/mpitest
Hello, I am rank 1/8
Hello, I am rank 2/8
Hello, I am rank 0/8
Hello, I am rank 7/8
Hello, I am rank 5/8
Hello, I am rank 3/8
Hello, I am rank 4/8
Hello, I am rank 6/8

Batch Scheduler / Slurm

If your target system is setup with a batch system such as SLURM, a
standard way to execute MPI applications is through a batch script. The
following example illustrates the context of a batch script for Slurm
that aims at starting a SingularityCE container on each node allocated
to the execution of the job. It can easily be adapted for all major
batch systems available.

$ cat my_job.sh
#!/bin/bash
#SBATCH --job-name singularity-mpi
#SBATCH -N $NNODES # total number of nodes
#SBATCH --time=00:05:00 # Max execution time

mpirun -n $NP singularity exec /var/nfsshare/gvallee/mpich.sif /opt/mpitest

In fact, the example describes a job that requests the number of nodes
specified by the NNODES environment variable and a total number of
MPI processes specified by the NP environment variable. The example
is also assuming that the container is based on the hybrid model; if it
is based on the bind model, please add the appropriate bind options.

A user can then submit a job by executing the following SLURM command:

$ sbatch my_job.sh

Alternative Launchers

On many systems it is common to use an alternative launcher to start MPI
applications, e.g. Slurm’s srun rather than the mpirun provided
by the MPI installation. This approach is supported with SingularityCE
as long as the container MPI version supports the same process
management interface (e.g. PMI2 / PMIx) and version as is used by the
launcher.

In the bind mode the host MPI is used in the container, and should
interact correctly with the same launchers as it does on the host.

Interconnects / Networking

High performance interconnects such as Infiniband and Omnipath require
that MPI implementations are built to support them. You may need to
install or bind Infiniband/Omnipath libraries into your containers when
using these interconnects.

By default SingularityCE exposes every device in /dev to the
container. If you run a container using the --contain or
--containall flags a minimal /dev is used instead. You may need
to bind in additional /dev/ entries manually to support the
operation of your interconnect drivers in the container in this case.

Troubleshooting Tips

If your containers run N rank 0 processes, instead of operating
correctly as an MPI application, it is likely that the MPI stack used to
launch the containerized application is not compatible with, or cannot
communicate with, the MPI stack in the container.

E.g. if we attempt to run the hybrid Open MPI container, but with
mpirun from MPICH loaded on the host:

$ module add mpich
$ mpirun -n 8 singularity run hybrid-openmpi.sif /opt/mpitest
Hello, I am rank 0/1
Hello, I am rank 0/1
Hello, I am rank 0/1
Hello, I am rank 0/1
Hello, I am rank 0/1
Hello, I am rank 0/1
Hello, I am rank 0/1
Hello, I am rank 0/1

If your container starts processes of different ranks, but fails with
communications errors there may also be a version incompatibility, or
interconnect libraries may not be available or configured properly with
the MPI stack in the container.

Please check the following things carefully before asking questions in
the SingularityCE community:

	For the hybrid mode, is the MPI version on the host compatible
with the version in the container? Newer MPI versions can
generally tolerate some mismatch in the version number, but it is
safest to use identical versions.

	Is the MPI stack in the container configured to support the
process management method used on the host? E.g. if you are
launching tasks with srun configured for PMIx only, then a
containerized MPI supporting PMI2 only will not operate as
expected.

	If you are using an interconnect other than standard Ethernet, are
any required libraries for it installed or bound into the
container? Is the MPI stack in the container configured correctly
to use them?

We recommend using the SingularityCE Google Group or Slack Channel to
ask for MPI advice from the SingularityCE community. HPC cluster
configurations vary greatly and most MPI problems are related to MPI /
interconnect configuration, and not caused by issues in SingularityCE
itself.

GPU Support (NVIDIA CUDA & AMD ROCm)

SingularityCE natively supports running application containers that use
NVIDIA’s CUDA GPU compute framework, or AMD’s ROCm solution. This allows
easy access to users of GPU-enabled machine learning frameworks such as
tensorflow, regardless of the host operating system. As long as the host
has a driver and library installation for CUDA/ROCm then it’s possible
to e.g. run tensorflow in an up-to-date Ubuntu 20.04 container, from an
older RHEL 7 host.

Applications that support OpenCL for compute acceleration can also be
used easily, with an additional bind option.

With SingularityCE 3.9 experimental support has been introduced to use
Nvidia’s nvidia-container-cli tooling for GPU container setup. This
functionality, accessible via the new --nvccli flag, improves
compatibility with OCI runtimes and exposes additional container
configuration options.

NVIDIA GPUs & CUDA (Legacy)

Commands that run, or otherwise execute containers (shell,
exec) can take an --nv option, which will setup the container’s
environment to use an NVIDIA GPU and the basic CUDA libraries to run a
CUDA enabled application. The --nv flag will:

	Ensure that the /dev/nvidiaX device entries are available inside
the container, so that the GPU cards in the host are accessible.

	Locate and bind the basic CUDA libraries from the host into the
container, so that they are available to the container, and match the
kernel GPU driver on the host.

	Set the LD_LIBRARY_PATH inside the container so that the bound-in
version of the CUDA libraries are used by applications run inside the
container.

Requirements

To use the --nv flag to run a CUDA application inside a container
you must ensure that:

	The host has a working installation of the NVIDIA GPU driver, and a
matching version of the basic NVIDIA/CUDA libraries. The host does
not need to have an X server running, unless you want to run
graphical apps from the container.

	The NVIDIA libraries are in the system’s library search path.

	The application inside your container was compiled for a CUDA
version, and device capability level, that is supported by the host
card and driver.

These requirements are usually satisfied by installing the NVIDIA
drivers and CUDA packages directly from the NVIDIA website. Linux
distributions may provide NVIDIA drivers and CUDA libraries, but they
are often outdated which can lead to problems running applications
compiled for the latest versions of CUDA.

SingularityCE will find the NVIDIA/CUDA libraries on your host using the
list of libraries in the configuration file
etc/singularity/nvbliblist, and resolving paths through the
ldconfig cache. At time of release this list is appropriate for the
latest stable CUDA version. It can be modified by the administrator to
add additional libraries if necessary. See the admin guide for more
details.

Example - tensorflow-gpu

Tensorflow is commonly used for machine learning projects but can be
difficult to install on older systems, and is updated frequently.
Running tensorflow from a container removes installation problems and
makes trying out new versions easy.

The official tensorflow repository on Docker Hub contains NVIDA GPU
supporting containers, that will use CUDA for processing. You can view
the available versions on the tags page on Docker Hub [https://hub.docker.com/r/tensorflow/tensorflow/tags]

The container is large, so it’s best to build or pull the docker image
to a SIF before you start working with it:

$ singularity pull docker://tensorflow/tensorflow:latest-gpu
...
INFO: Creating SIF file...
INFO: Build complete: tensorflow_latest-gpu.sif

Then run the container with GPU support:

$ singularity run --nv tensorflow_latest-gpu.sif

________ _______________
___ __/__________________________________ ____/__ /________ __
__ / _ _ _ __ _ ___/ __ _ ___/_ /_ __ /_ __ _ | /| / /
_ / / __/ / / /(__)/ /_/ / / _ __/ _ / / /_/ /_ |/ |/ /
/_/ ___//_/ /_//____/ ____//_/ /_/ /_/ ____/____/|__/

You are running this container as user with ID 1000 and group 1000,
which should map to the ID and group for your user on the Docker host. Great!

Singularity>

You can verify the GPU is available within the container by using the
tensorflow list_local_devices() function:

Singularity> python
Python 2.7.15+ (default, Jul 9 2019, 16:51:35)
[GCC 7.4.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from tensorflow.python.client import device_lib
>>> print(device_lib.list_local_devices())
2019-11-14 15:32:09.743600: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-11-14 15:32:09.784482: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3292620000 Hz
2019-11-14 15:32:09.787911: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x565246634360 executing computations on platform Host. Devices:
2019-11-14 15:32:09.787939: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): Host, Default Version
2019-11-14 15:32:09.798428: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2019-11-14 15:32:09.842683: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1006] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-11-14 15:32:09.843252: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5652469263d0 executing computations on platform CUDA. Devices:
2019-11-14 15:32:09.843265: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce GT 730, Compute Capability 3.5
2019-11-14 15:32:09.843380: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1006] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-11-14 15:32:09.843984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GT 730 major: 3 minor: 5 memoryClockRate(GHz): 0.9015
...

Multiple GPUs

By default, SingularityCE makes all host devices available in the
container. When the --contain option is used a minimal /dev tree
is created in the container, but the --nv option will ensure that
all nvidia devices on the host are present in the container.

This behaviour is different to nvidia-docker where an
NVIDIA_VISIBLE_DEVICES environment variable is used to control
whether some or all host GPUs are visible inside a container. The
nvidia-container-runtime explicitly binds the devices into the
container dependent on the value of NVIDIA_VISIBLE_DEVICES.

To control which GPUs are used in a SingularityCE container that is run
with --nv you can set SINGULARITYENV_CUDA_VISIBLE_DEVICES before
running the container, or CUDA_VISIBLE_DEVICES inside the container.
This variable will limit the GPU devices that CUDA programs see.

E.g. to run the tensorflow container, but using only the first GPU in
the host, we could do:

$ SINGULARITYENV_CUDA_VISIBLE_DEVICES=0 singularity run --nv tensorflow_latest-gpu.sif

or

$ export SINGULARITYENV_CUDA_VISIBLE_DEVICES=0
$ singularity run tensorflow_latest-gpu.sif

Troubleshooting

If the host installation of the NVIDIA / CUDA driver and libraries is
working and up-to-date there are rarely issues running CUDA programs
inside of SingularityCE containers. The most common issue seen is:

CUDA_ERROR_UNKNOWN when everything seems to be correctly configured

CUDA depends on multiple kernel modules being loaded. Not all of the
modules are loaded at system startup. Some portions of the NVIDA driver
stack are initialized when first needed. This is done using a setuid
root binary, so initializing can be triggered by any user on the host.
In SingularityCE containers, privilege escalation is blocked, so the
setuid root binary cannot initialize the driver stack fully.

If you experience CUDA_ERROR_UNKNOWN in a container, initialize the
driver stack on the host first, by running a CUDA program there or
modprobe nvidia_uvm as root, and using nvidia-persistenced to
avoid driver unload.

NVIDIA GPUs & CUDA (nvidia-container-cli)

SingularityCE 3.9 introduces the --nvccli option, which will
instruct SingularityCE to perform GPU container setup using the
nvidia-container-cli utility. This utility must be installed
separately from SingularityCE. It is available in the repositories of
some distributions, and at:
https://nvidia.github.io/libnvidia-container/

Warning

This feature is considered experimental in SingularityCE 3.9. It
cannot not replace the legacy NVIDIA support in all situations, and
should be tested carefully before use in production workflows.

Using nvidia-container-cli to configure a container for GPU
operation has a number of advantages, including:

	The tool is maintained by NVIDIA, and will track new features /
libraries in new CUDA releases closely.

	Support for passing only specific GPUs / MIG devices into the
container.

	Support for providing different classes of GPU capability to the
container, e.g. compute, graphics, and display functionality.

	Configuration via the same environment variables that are in use with
OCI containers.

Requirements & Limitations

	nvidia-container-cli must be installed on your host, owned by the
root user. Its path must be set in singularity.conf. This
value will be set at build time if nvidia-container-cli is found
on the search $PATH.

	Your system should support the overlay filesystem if you will be
running SIF containers in set-uid mode.

	--nvccli cannot currently be used in combination with
--fakeroot in a set-uid install of Singularity. Use the
traditional binding method with --nv only.

	There are known problems with library discovery for the current
nvidia-container-cli in recent Debian distributions. See this
GitHub issue [https://github.com/NVIDIA/nvidia-docker/issues/1399]

Example - tensorflow-gpu

Tensorflow can be run using --nvccli in the same manner as the
legacy --nv binding approach. Pull the large container to a SIF
file:

$ singularity pull docker://tensorflow/tensorflow:latest-gpu
...
INFO: Creating SIF file...
INFO: Build complete: tensorflow_latest-gpu.sif

Then run the container with nvidia-container-cli GPU support:

$ singularity run --nv --nvccli tensorflow_latest-gpu.sif
INFO: Setting --writable-tmpfs (required by nvidia-container-cli)

________ _______________
___ __/__________________________________ ____/__ /________ __
__ / _ _ _ __ _ ___/ __ _ ___/_ /_ __ /_ __ _ | /| / /
_ / / __/ / / /(__)/ /_/ / / _ __/ _ / / /_/ /_ |/ |/ /
/_/ ___//_/ /_//____/ ____//_/ /_/ /_/ ____/____/|__/

You are running this container as user with ID 1000 and group 1000,
which should map to the ID and group for your user on the Docker host. Great!

Singularity>

Note that --writable--tmpfs was automatically set, which allows
files to be written inside the container to an ephemeral overlay that
will be discarded on exit. This is required for the
nvidia-container-cli functionality.

You can verify the GPU is available within the container by using the
tensorflow list_local_devices() function:

Singularity> python
Python 2.7.15+ (default, Jul 9 2019, 16:51:35)
[GCC 7.4.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from tensorflow.python.client import device_lib
>>> print(device_lib.list_local_devices())
...
device_type: "GPU"
memory_limit: 14474280960
locality {
 bus_id: 1
 links {
 }
}
incarnation: 13349913758992036690
physical_device_desc: "device: 0, name: Tesla T4, pci bus id: 0000:00:1e.0, compute capability: 7.5"
...

GPU Selection

When running with --nvccli, by default SingularityCE will expose all
GPUs on the host inside the container. This mirrors the functionality of
the legacy GPU support for the most common use-case.

Setting the SINGULARITY_CUDA_VISIBLE_DEVICES environment variable
before running a container is still supported, to control which GPUs are
used by CUDA programs that honor CUDA_VISIBLE_DEVICES. However, more
powerful GPU isolation is possible using the --contain flag and
NVIDIA_VISIBLE_DEVICES environment variable. This controls which GPU
devices are bound into the /dev tree in the container.

For example, to pass only the 2nd and 3rd GPU into a container running
on a system with 4 GPUs, run the following:

$ export NVIDIA_VISIBLE_DEVICES=1,2
$ singularity run --contain --nv --nvccli mycontainer.sif

Note that:

	NVIDIA_VISIBLE_DEVICES is not prepended with SINGULARITY_ as
this variable controls container setup, and is not passed into the
container.

	The GPU device identifiers start at 0, so 1,2 refers to the 2nd and
3rd GPU.

	You can use GPU UUIDs in place of numeric identifiers. Use
nvidia-smi -L to list both numeric IDs and UUIDs available on the
system.

	all can be used to pass all available GPUs into the container.

If you use --contain without setting NVIDIA_VISIBLE_DEVICES, no
GPUs will be available in the container, and a warning will be shown:

$ singularity run --contain --nv --nvccli mycontainer.sif
WARNING: When using nvidia-container-cli with --contain NVIDIA_VISIBLE_DEVICES
must be set or no GPUs will be available in container.

To restore the behaviour of the legacy GPU handling, set
NVIDIA_VISIBLE_DEVICES=0 when running with --contain.

If your system contains Ampere or newer GPUs that support virtual MIG
devices, you can specify MIG identifiers / UUIDs.

$ export NVIDIA_VISIBLE_DEVICES=MIG-GPU-5c89852c-d268-c3f3-1b07-005d5ae1dc3f/7/0

SingularityCE does not configure MIG partitions. It is expected that
these would be statically configured by the system administrator, or
setup dynamically by a job scheduler / workflow system according to the
requirements of the job.

Other GPU Options

In --nvccli mode, SingularityCE understands the following additional
environment variables. Note that these environment variables are read
from the environment where singularity is run. SingularityCE does
not currently read these settings from the container environment.

	NVIDIA_DRIVER_CAPABILITIES controls which libraries and utilities
are mounted in the container, to support different requirements. The
default value under SingularityCE is compute,utility, which will
provide CUDA functionality and basic utilities such as
nvidia-smi. Other options include graphics for OpenGL/Vulkan
support, video for the codecs SDK, and display to use X11
from a container.

	NVIDIA_REQUIRE_* variables allow specifying requirements, which
will be checked by nvidia-container-cli prior to starting the
container. Constraints can be set on cuda, driver, arch,
and brand values. Docker/OCI images may set these variables
inside the container, to indicate runtime requirements. However,
these container variables are not yet interpreted by SingularityCE.

	NVIDIA_DISABLE_REQUIRE will disable the enforcement of any
NVIDIA_REQUIRE_* requirements that are set.

Full details of the supported values for these environment variables can
be found in the container-toolkit guide:

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/user-guide.html#environment-variables-oci-spec

AMD GPUs & ROCm

SingularityCE 3.5 adds a --rocm flag to support GPU compute with the
ROCm framework using AMD Radeon GPU cards.

Commands that run, or otherwise execute containers (shell,
exec) can take an --rocm option, which will setup the
container’s environment to use a Radeon GPU and the basic ROCm libraries
to run a ROCm enabled application. The --rocm flag will:

	Ensure that the /dev/dri/ device entries are available inside the
container, so that the GPU cards in the host are accessible.

	Locate and bind the basic ROCm libraries from the host into the
container, so that they are available to the container, and match the
kernel GPU driver on the host.

	Set the LD_LIBRARY_PATH inside the container so that the bound-in
version of the ROCm libraries are used by application run inside the
container.

Requirements

To use the --rocm flag to run a CUDA application inside a container
you must ensure that:

	The host has a working installation of the amdgpu driver, and a
compatible version of the basic ROCm libraries. The host does not
need to have an X server running, unless you want to run graphical
apps from the container.

	The ROCm libraries are in the system’s library search path.

	The application inside your container was compiled for a ROCm version
that is compatible with the ROCm version on your host.

These requirements can be satisfied by following the requirements on the
ROCm web site [https://rocm.github.io/ROCmInstall.html]

At time of release, SingularityCE was tested successfully on Debian 10
with ROCm 2.8/2.9 and the upstream kernel driver, and Ubuntu 18.04 with
ROCm 2.9 and the DKMS driver.

Example - tensorflow-rocm

Tensorflow is commonly used for machine learning projects, but can be
difficult to install on older systems, and is updated frequently.
Running tensorflow from a container removes installation problems and
makes trying out new versions easy.

The rocm tensorflow repository on Docker Hub contains Radeon GPU
supporting containers, that will use ROCm for processing. You can view
the available versions on the tags page on Docker Hub [https://hub.docker.com/r/rocm/tensorflow/tags]

The container is large, so it’s best to build or pull the docker image
to a SIF before you start working with it:

$ singularity pull docker://rocm/tensorflow:latest
...
INFO: Creating SIF file...
INFO: Build complete: tensorflow_latest.sif

Then run the container with GPU support:

$ singularity run --rocm tensorflow_latest.sif

You can verify the GPU is available within the container by using the
tensorflow list_local_devices() function:

Singularity> ipython
Python 3.5.2 (default, Jul 10 2019, 11:58:48)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for help.
>>> from tensorflow.python.client import device_lib
...
>>> print(device_lib.list_local_devices())
...
2019-11-14 16:33:42.750509: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1651] Found device 0 with properties:
name: Lexa PRO [Radeon RX 550/550X]
AMDGPU ISA: gfx803
memoryClockRate (GHz) 1.183
pciBusID 0000:09:00.0
...

OpenCL Applications

Both the --rocm and --nv flags will bind the vendor OpenCL
implementation libraries into a container that is being run. However,
these libraries will not be used by OpenCL applications unless a vendor
icd file is available under /etc/OpenCL/vendors that directs OpenCL
to use the vendor library.

The simplest way to use OpenCL in a container is to --bind
/etc/OpenCL so that the icd files from the host (which match the
bound-in libraries) are present in the container.

Example - Blender OpenCL

The Sylabs examples repository [https://github.com/sylabs/examples]
contains an example container definition for the 3D modelling
application ‘Blender’.

The latest versions of Blender supports OpenCL rendering. You can run
Blender as a graphical application that will make use of a local Radeon
GPU for OpenCL compute using the container that has been published to
the Sylabs library:

$ singularity exec --rocm --bind /etc/OpenCL library://sylabs/examples/blender blender

Note the exec used as the runscript for this container is setup for
batch rendering (which can also use OpenCL).

Contributing

SingularityCE is an open source project, meaning we have the challenge
of limited resources. We are grateful for any support that you can
offer. Helping other users, raising issues, helping write documentation,
or contributing code are all ways to help!

Join the community

This is a huge endeavor, and your help would be greatly appreciated!
Post to online communities about SingularityCE, and request that your
distribution vendor, service provider, and system administrators include
SingularityCE for you!

SingularityCE Google Group

If you have been using SingularityCE and having good luck with it, join
our Google Group [https://groups.google.com/g/singularity-ce] and
help out other users!

SingularityCE on Slack

Many of our users come to Slack for quick help with an issue. You can
find us at singularityce.slack.com [https://singularityce.slack.com/].

Raise an Issue

For general bugs/issues, you can open an issue at the GitHub repo [https://github.com/sylabs/singularity/issues/new]. However, if you
find a security related issue/problem, please email Sylabs directly at
security@sylabs.io. More information about the Sylabs security policies
and procedures can be found here [https://www.sylabs.io/singularity/security-policy/]

Write Documentation

We (like almost all open source software providers) have a documentation
dilemma… We tend to focus on the code features and functionality before
working on documentation. And there is very good reason for this: we
want to share the love so nobody feels left out!

You can contribute to the documentation by raising an issue to suggest
an improvement [https://github.com/sylabs/singularity-userdocs/issues/new] or by
sending a pull request [https://github.com/sylabs/singularity-userdocs/compare] on our
repository for documentation [https://github.com/sylabs/singularity-userdocs].

The current documentation is generated with:

	reStructured Text (RST) [http://docutils.sourceforge.net/rst.html]
and ReadTheDocs [https://readthedocs.org/].

Other dependencies include:

	Python 3.5 or newer [https://www.python.org/downloads/].

	Sphinx [https://pypi.org/project/Sphinx/].

More information about contributing to the documentation, instructions
on how to install the dependencies, and how to generate the files can be
obtained here [https://github.com/sylabs/singularity-userdocs/blob/main/README.md].

For more information on using Git and GitHub to create a pull request
suggesting additions and edits to the docs, see the section on
contributing to the code. The procedure is
identical for contributions to the documentation and the code base.

Contribute to the code

We use the traditional GitHub Flow [https://guides.github.com/introduction/flow/] to develop. This means
that you fork the main repo, create a new branch to make changes, and
submit a pull request (PR) to the main branch.

Check out our official CONTRIBUTING.md [https://github.com/sylabs/singularity/blob/main/CONTRIBUTING.md]
document, which also includes a code of conduct [https://github.com/sylabs/singularity/blob/main/CONTRIBUTING.md#code-of-conduct].

Step 1. Fork the repo

To contribute to SingularityCE, you should obtain a GitHub account and
fork the SingularityCE [https://github.com/sylabs/singularity]
repository. Once forked, clone your fork of the repo to your computer.
(Obviously, you should replace your-username with your GitHub
username.)

$ git clone https://github.com/your-username/singularity.git && \
 cd singularity/

Step 2. Checkout a new branch

Branches [https://guides.github.com/introduction/flow//] are a way of
isolating your features from the main branch. Given that we’ve just
cloned the repo, we will probably want to make a new branch from main
in which to work on our new feature. Lets call that branch
new-feature:

$ git checkout main && \
 git checkout -b new-feature

Note

You can always check which branch you are in by running git
branch.

Step 3. Make your changes

On your new branch, go nuts! Make changes, test them, and when you are
happy commit the changes to the branch:

$ git add file-changed1 file-changed2...

$ git commit -m "what changed?"

This commit message is important - it should describe exactly the
changes that you have made. Good commit messages read like so:

$ git commit -m "changed function getConfig in functions.go to output csv to fix #2"

$ git commit -m "updated docs about shell to close #10"

The tags close #10 and fix #2 are referencing issues that are
posted on the upstream repo where you will direct your pull request.
When your PR is merged into the main branch, these messages will
automatically close the issues, and further, they will link your commits
directly to the issues they intend to fix. This will help future
maintainers understand your contribution, or (hopefully not) revert the
code back to a previous version if necessary.

Step 4. Push your branch to your fork

When you are done with your commits, you should push your branch to your
fork (and you can also continuously push commits here as you work):

$ git push origin new-feature

Note that you should always check the status of your branches to see
what has been pushed (or not):

$ git status

Step 5. Submit a Pull Request

Once you have pushed your branch, then you can go to your fork (in the
web GUI on GitHub) and submit a Pull Request [https://help.github.com/articles/creating-a-pull-request/].
Regardless of the name of your branch, your PR should be submitted to
the Sylabs main branch. Submitting your PR will open a
conversation thread for the maintainers of SingularityCE to discuss your
contribution. At this time, the continuous integration that is linked
with the code base will also be executed. If there is an issue, or if
the maintainers suggest changes, you can continue to push commits to
your branch and they will update the Pull Request.

Step 6. Keep your branch in sync

Cloning the repo will create an exact copy of the SingularityCE
repository at that moment. As you work, your branch may become out of
date as others merge changes into the upstream main. In the event that
you need to update a branch, you will need to follow the next steps:

$ git remote add upstream https://github.com/sylabs/singularity.git && # to add a new remote named "upstream" \
 git checkout main && # or another branch to be updated \
 git pull upstream main && \
 git push origin main && # to update your fork \
 git checkout new-feature && \
 git merge main

Appendix

SingularityCE’s environment variables

SingularityCE 3.0 comes with some environment variables you can set or
modify depending on your needs. You can see them listed alphabetically
below with their respective functionality.

A

	SINGULARITY_ADD_CAPS: To specify a list (comma separated string)
of capabilities to be added. Default is an empty string.

	SINGULARITY_ALL: List all the users and groups capabilities.

	SINGULARITY_ALLOW_SETUID: To specify that setuid binaries should
or not be allowed in the container. (root only) Default is set to
false.

	SINGULARITY_APP and SINGULARITY_APPNAME: Sets the name of an
application to be run inside a container.

	SINGULARITY_APPLY_CGROUPS: Used to apply cgroups from an input
file for container processes. (it requires root privileges)

B

	SINGULARITY_BINDPATH and SINGULARITY_BIND: Comma separated
string source:<dest> list of paths to bind between the host and
the container.

	SINGULARITY_BLKIO_WEIGHT: Specify a relative weight for block
device access during contention. Range 10-1000. Default is 0 (disabled).

	SINGULARITY_BLKIO_WEIGHT_DEVICE: Specify a relative weight for
block device access during contention on a specific device.
Must be supplied in <device path>:weight format. Default is unset.

	SINGULARITY_BOOT: Set to false by default, considers if executing
/sbin/init when container boots (root only).

	SINGULARITY_BUILDER: To specify the remote builder service URL.
Defaults to our remote builder.

C

	SINGULARITY_CACHEDIR: Specifies the directory for image downloads
to be cached in. See Cache Folders.

	SINGULARITY_CLEANENV: Specifies if the environment should be
cleaned or not before running the container. Default is set to false.

	SINGULARITY_COMPAT: Set to true to enable Docker/OCI compatibility mode.
Equivalent to setting --containall --no-eval --no-init --no-umask
--writable-tmpfs. Default is false.

	SINGULARITY_CONTAIN: To use minimal /dev and empty other
directories (e.g. /tmp and $HOME) instead of sharing
filesystems from your host. Default is set to false.

	SINGULARITY_CONTAINALL: To contain not only file systems, but
also PID, IPC, and environment. Default is set to false.

	SINGULARITY_CONTAINLIBS: Used to specify a string of file names
(comma separated string) to bind to the /.singularity.d/libs
directory.

	SINGULARITY_CPU_SHARES: Specify a relative share of CPU time
available to the container. Default is -1 (disabled).

	SINGULARITY_CPUS: Specify a fractional number of CPUs available
to the container. Default is unset.

	SINGULARITY_CPUSET_CPUS: Specify a list or range of CPU cores
available to the container. Default is unset.

	SINGULARITY_CPUSET_MEMS: Specify a list or range of memory nodes
available to the container. Default is unset.

D

	SINGULARITY_DEBUG: Enable debug output when set. Equivalent to -d /
--debug.

	SINGULARITY_DEFFILE: Shows the SingularityCE recipe that was used
to generate the image.

	SINGULARITY_DESC: Contains a description of the capabilities.

	SINGULARITY_DETACHED: To submit a build job and print the build
ID (no real-time logs and also requires --remote). Default is set
to false.

	SINGULARITY_DISABLE_CACHE: To disable all caching of docker/oci,
library, oras, etc. downloads and built SIFs. Default is set to
false.

	SINGULARITY_DNS: A list of the DNS server addresses separated by
commas to be added in resolv.conf.

	SINGULARITY_DOCKER_LOGIN: To specify the interactive prompt for
docker authentication.

	SINGULARITY_DOCKER_USERNAME: To specify a username for docker
authentication.

	SINGULARITY_DOCKER_PASSWORD: To specify the password for docker
authentication.

	SINGULARITY_DOWNLOAD_CONCURRENCY: To specify how many concurrent streams
when downloading (pulling) an image from cloud library.

	SINGULARITY_DOWNLOAD_PART_SIZE: To specify the size of each part (bytes)
when concurrent downloads are enabled.

	SINGULARITY_DOWNLOAD_BUFFER_SIZE: To specify the transfer buffer size
(bytes) when concurrent downloads are enabled.

	SINGULARITY_DROP_CAPS: To specify a list (comma separated string)
of capabilities to be dropped. Default is an empty string.

E

	SINGULARITY_ENVIRONMENT: Contains all the environment variables
that have been exported in your container.

	SINGULARITY_ENCRYPTION_PASSPHRASE: Used to specify the plaintext
passphrase to encrypt the container.

	SINGULARITY_ENCRYPTION_PEM_PATH: Used to specify the path of the
file containing public or private key to encrypt the container in PEM
format.

	SINGULARITYENV_*: Allows you to transpose variables into the
container at runtime. You can see more in detail how to use this
variable in our environment and metadata section.

	SINGULARITYENV_APPEND_PATH: Used to append directories to the end
of the $PATH environment variable. You can see more in detail on
how to use this variable in our environment and metadata
section.

	SINGULARITYENV_PATH: A specified path to override the $PATH
environment variable within the container. You can see more in detail
on how to use this variable in our environment and metadata
section.

	SINGULARITYENV_PREPEND_PATH: Used to prepend directories to the
beginning of $PATH` environment variable. You can see more in
detail on how to use this variable in our environment and
metadata section.

F

	SINGULARITY_FAKEROOT: Set to false by default, considers running
the container in a new user namespace as uid 0 (experimental).

	SINGULARITY_FORCE: Forces to kill the instance.

G

	SINGULARITY_GROUP: Used to specify a string of capabilities for
the given group.

H

	SINGULARITY_HELPFILE: Specifies the runscript helpfile, if it
exists.

	SINGULARITY_HOME : A home directory specification, it could be a
source or destination path. The source path is the home directory
outside the container and the destination overrides the home
directory within the container.

	SINGULARITY_HOSTNAME: The container’s hostname.

I

	SINGULARITY_IMAGE: Filename of the container.

J

	SINGULARITY_JSON: Specifies the structured json of the def file,
every node as each section in the def file.

K

	SINGULARITY_KEEP_PRIVS: To let root user keep privileges in the
container. Default is set to false.

L

	SINGULARITY_LABELS: Specifies the labels associated with the
image.

	SINGULARITY_LIBRARY: Specifies the library to pull from. Default
is set to our Cloud Library.

M

	SINGULARITY_MEMORY: Specify a memory limit in bytes for the
container. Default is unset (no limit).

	SINGULARITY_MEMORY_RESERVATION: Specify a memory soft limit in
bytes for the container. Default is unset (no limit).

	SINGULARITY_MEMORY_SWAP: Specify a limit for memory + swap usage by the
container. Default is unset. Effect depends on SINGULARITY_MEMORY.

	SINGULARITY_MOUNT: To specify host to container mounts, using the
syntax understood by the --mount flag. Multiple mounts should be
separated by newline characters.

N

	SINGULARITY_NAME: Specifies a custom image name.

	SINGULARITY_NETWORK: Used to specify a desired network. If more
than one parameters is used, addresses should be separated by commas,
where each network will bring up a dedicated interface inside the
container.

	SINGULARITY_NETWORK_ARGS: To specify the network arguments to
pass to CNI plugins.

	SINGULARITY_NOCLEANUP: To not clean up the bundle after a failed
build, this can be helpful for debugging. Default is set to false.

	SINGULARITY_NOHTTPS: Sets to either false or true to avoid using
HTTPS for communicating with the local docker registry. Default is
set to false.

	SINGULARITY_NO_EVAL: Set to true in order to prevent SingularityCE
performing shell evaluation on environment variables / runscript
arguments at startup.

	SINGULARITY_NO_HOME: Considers not mounting users home directory
if home is not the current working directory. Default is set to
false.

	SINGULARITY_NO_INIT and SINGULARITY_NOSHIMINIT: Considers not
starting the shim process with --pid.

	SINGULARITY_NO_MOUNT: Disable an automatic mount that has been set in
singularity.conf. Accepts proc / sys / dev / devpts / home / tmp /
hostfs / cwd, or the source path for a system specifc bind.

	SINGULARITY_NO_NV: Flag to disable Nvidia support. Opposite of
SINGULARITY_NV.

	SINGULARITY_NO_PRIVS: To drop all the privileges from root user
in the container. Default is set to false.

	SINGULARITY_NO_UMASK: Set to true to prevent host umask propagating
to container, and use a default 0022 unmask instead. Default is false.

	SINGULARITY_NV: To enable Nvidia GPU support. Default is
set to false.

	SINGULARITY_NVCCLI: To use nvidia-container-cli for container GPU setup
(experimental).

O

	SINGULARITY_OOM_KILL_DISABLE: Set to true to disable OOM killer for
container processes, if possible. Default is false.

	SINGULARITY_OVERLAY and SINGULARITY_OVERLAYIMAGE: To indicate
the use of an overlay file system image for persistent data storage
or as read-only layer of container.

P

	SINGULARITY_PIDS_LIMIT: Specify maximum number of processes that
the container may spawne. Default is 0 (no limit).

	SINGULARITY_PWD and SINGULARITY_TARGET_PWD: The initial
working directory for payload process inside the container.

R

	SINGULARITY_REMOTE: To build an image remotely. (Does not require
root) Default is set to false.

	SINGULARITY_ROOTFS: To reference the system file location.

	SINGULARITY_RUNSCRIPT: Specifies the runscript of the image.

S

	SINGULARITY_SANDBOX: To specify that the format of the image
should be a sandbox. Default is set to false.

	SINGULARITY_SCRATCH and SINGULARITY_SCRATCHDIR: Used to
include a scratch directory within the container that is linked to a
temporary directory. (use -W to force location)

	SINGULARITY_SECTION: To specify a comma separated string of all
the sections to be run from the deffile (setup, post, files,
environment, test, labels, none)

	SINGULARITY_SECURITY: Used to enable security features. (SELinux,
Apparmor, Seccomp)

	SINGULARITY_SECRET: Lists all the private keys instead of the
default which display the public ones.

	SINGULARITY_SHELL: The path to the program to be used as an
interactive shell.

	SINGULARITY_SIF_FUSE: (experimental) Set to true to attempt to
mount SIF images with squashfuse in unprivileged user namespace
workflows.

	SINGULARITY_SIGNAL: Specifies a signal sent to the instance.

T

	SINGULARITY_TEST: Specifies the test script for the image.

	SINGULARITY_TMPDIR: Used with the build command, to consider
a temporary location for the build. See Temporary Folders.

U

	SINGULARITY_UNSHARE_PID: To specify that the container will run
in a new PID namespace. Default is set to false.

	SINGULARITY_UNSHARE_IPC: To specify that the container will run
in a new IPC namespace. Default is set to false.

	SINGULARITY_UNSHARE_NET: To specify that the container will run
in a new network namespace (sets up a bridge network interface by
default). Default is set to false.

	SINGULARITY_UNSHARE_UTS: To specify that the container will run
in a new UTS namespace. Default is set to false.

	SINGULARITY_UPDATE: To run the definition over an existing
container (skips the header). Default is set to false.

	SINGULARITY_URL: Specifies the key server URL.

	SINGULARITY_USER: Used to specify a string of capabilities for
the given user.

	SINGULARITY_USERNS and SINGULARITY_UNSHARE_USERNS: To specify
that the container will run in a new user namespace, allowing
SingularityCE to run completely unprivileged on recent kernels. This
may not support every feature of SingularityCE. (Sandbox image only).
Default is set to false.

W

	SINGULARITY_WORKDIR: The working directory to be used for
/tmp, /var/tmp and $HOME (if -c or --contain was
also used)

	SINGULARITY_WRITABLE: By default, all SingularityCE containers
are available as read only, this option makes the file system
accessible as read/write. Default set to false.

	SINGULARITY_WRITABLE_TMPFS: Makes the file system accessible as
read-write with non-persistent data (with overlay support only).
Default is set to false.

Build Modules

library bootstrap agent

Overview

You can use an existing container on the Container Library as your
“base,” and then add customization. This allows you to build multiple
images from the same starting point. For example, you may want to build
several containers with the same custom python installation, the same
custom compiler toolchain, or the same base MPI installation. Instead of
building these from scratch each time, you could create a base container
on the Container Library and then build new containers from that
existing base container adding customizations in %post,
%environment, %runscript, etc.

Keywords

Bootstrap: library

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

From: <entity>/<collection>/<container>:<tag>

The From keyword is mandatory. It specifies the container to use as
a base. entity is optional and defaults to library.
collection is optional and defaults to default. This is the
correct namespace to use for some official containers (alpine for
example). tag is also optional and will default to latest.

Library: http://custom/library

The Library keyword is optional. It will default to
https://library.sylabs.io.

Fingerprints: 22045C8C0B1004D058DE4BEDA20C27EE7FF7BA84

The Fingerprints keyword is optional. It specifies one or more comma
separated fingerprints corresponding to PGP public keys. If present, the
bootstrap image will be verified and the build will only proceed if it
is signed by keys matching all of the specified fingerprints.

docker bootstrap agent

Overview

Docker images are comprised of layers that are assembled at runtime to
create an image. You can use Docker layers to create a base image, and
then add your own custom software. For example, you might use Docker’s
Ubuntu image layers to create an Ubuntu SingularityCE container. You
could do the same with CentOS, Debian, Arch, Suse, Alpine, BusyBox, etc.

Or maybe you want a container that already has software installed. For
instance, maybe you want to build a container that uses CUDA and cuDNN
to leverage the GPU, but you don’t want to install from scratch. You can
start with one of the nvidia/cuda containers and install your
software on top of that.

Or perhaps you have already invested in Docker and created your own
Docker containers. If so, you can seamlessly convert them to
SingularityCE with the docker bootstrap module.

Keywords

Bootstrap: docker

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

From: <registry>/<namespace>/<container>:<tag>@<digest>

The From keyword is mandatory. It specifies the container to use as
a base. registry is optional and defaults to index.docker.io.
namespace is optional and defaults to library. This is the
correct namespace to use for some official containers (ubuntu for
example). tag is also optional and will default to latest

See SingularityCE and Docker for more
detailed info on using Docker registries.

Registry: http://custom_registry

The Registry keyword is optional. It will default to
index.docker.io.

Namespace: namespace

The Namespace keyword is optional. It will default to library.

Notes

Docker containers are stored as a collection of tarballs called layers.
When building from a Docker container the layers must be downloaded and
then assembled in the proper order to produce a viable file system. Then
the file system must be converted to Singularity Image File (sif)
format.

Building from Docker Hub is not considered reproducible because if any
of the layers of the image are changed, the container will change. If
reproducibility is important to your workflow, consider hosting a base
container on the Container Library and building from it instead.

For detailed information about setting your build environment see
Build Customization.

shub bootstrap agent

Overview

You can use an existing container on Singularity Hub as your “base,” and
then add customization. This allows you to build multiple images from
the same starting point. For example, you may want to build several
containers with the same custom python installation, the same custom
compiler toolchain, or the same base MPI installation. Instead of
building these from scratch each time, you could create a base container
on Singularity Hub and then build new containers from that existing base
container adding customizations in %post , %environment,
%runscript, etc.

Keywords

Bootstrap: shub

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

From: shub://<registry>/<username>/<container-name>:<tag>@digest

The From keyword is mandatory. It specifies the container to use as
a base. registry is optional and defaults to ``singularity-hub.org.
tag and digest are also optional. tag defaults to latest
and digest can be left blank if you want the latest build.

Notes

When bootstrapping from a Singularity Hub image, all previous definition
files that led to the creation of the current image will be stored in a
directory within the container called
/.singularity.d/bootstrap_history. SingularityCE will also alert you
if environment variables have been changed between the base image and
the new image during bootstrap.

oras bootstrap agent

Overview

Using, this module, a container from supporting OCI Registries - Eg: ACR
(Azure Container Registry), local container registries, etc can be used
as your “base” image and later customized. This allows you to build
multiple images from the same starting point. For example, you may want
to build several containers with the same custom python installation,
the same custom compiler toolchain, or the same base MPI installation.
Instead of building these from scratch each time, you could make use of
oras to pull an appropriate base container and then build new
containers by adding customizations in %post , %environment,
%runscript, etc.

Keywords

Bootstrap: oras

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

From: oras://registry/namespace/image:tag

The From keyword is mandatory. It specifies the container to use as
a base. Also,``tag`` is mandatory that refers to the version of image
you want to use.

localimage bootstrap agent

This module allows you to build a container from an existing
SingularityCE container on your host system. The name is somewhat
misleading because your container can be in either image or directory
format.

Overview

You can use an existing container image as your “base”, and then add
customization. This allows you to build multiple images from the same
starting point. For example, you may want to build several containers
with the same custom python installation, the same custom compiler
toolchain, or the same base MPI installation. Instead of building these
from scratch each time, you could start with the appropriate local base
container and then customize the new container in %post,
%environment, %runscript, etc.

Keywords

Bootstrap: localimage

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

From: /path/to/container/file/or/directory

The From keyword is mandatory. It specifies the local container to
use as a base.

Fingerprints: 22045C8C0B1004D058DE4BEDA20C27EE7FF7BA84

The Fingerprints keyword is optional. It specifies one or more comma
separated fingerprints corresponding to PGP public keys. If present, and
the From: keyword points to a SIF format image, it will be verified
and the build will only proceed if it is signed by keys matching all
of the specified fingerprints.

Notes

When building from a local container, all previous definition files that
led to the creation of the current container will be stored in a
directory within the container called
/.singularity.d/bootstrap_history. SingularityCE will also alert you
if environment variables have been changed between the base image and
the new image during bootstrap.

yum bootstrap agent

This module allows you to build a Red Hat/CentOS/Scientific Linux style
container from a mirror URI.

Overview

Use the yum module to specify a base for a CentOS-like container.
You must also specify the URI for the mirror you would like to use.

Keywords

Bootstrap: yum

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

OSVersion: 7

The OSVersion keyword is optional. It specifies the OS version you would
like to use. It is only required if you have specified a %{OSVERSION}
variable in the MirrorURL keyword.

MirrorURL: http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/$basearch/

The MirrorURL keyword is mandatory. It specifies the URI to use as a
mirror to download the OS. If you define the OSVersion keyword, then
you can use it in the URI as in the example above.

Include: yum

The Include keyword is optional. It allows you to install additional
packages into the core operating system. It is a best practice to supply
only the bare essentials such that the %post section has what it
needs to properly complete the build. One common package you may want to
install when using the yum build module is YUM itself.

Notes

There is a major limitation with using YUM to bootstrap a container. The
RPM database that exists within the container will be created using the
RPM library and Berkeley DB implementation that exists on the host
system. If the RPM implementation inside the container is not compatible
with the RPM database that was used to create the container, RPM and YUM
commands inside the container may fail. This issue can be easily
demonstrated by bootstrapping an older RHEL compatible image by a newer
one (e.g. bootstrap a Centos 5 or 6 container from a Centos 7 host).

In order to use the yum build module, you must have yum
installed on your system. It may seem counter-intuitive to install YUM
on a system that uses a different package manager, but you can do so.
For instance, on Ubuntu you can install it like so:

$ sudo apt-get update && sudo apt-get install yum

debootstrap build agent

This module allows you to build a Debian/Ubuntu style container from a
mirror URI.

Overview

Use the debootstrap module to specify a base for a Debian-like
container. You must also specify the OS version and a URI for the mirror
you would like to use.

Keywords

Bootstrap: debootstrap

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

OSVersion: xenial

The OSVersion keyword is mandatory. It specifies the OS version you
would like to use. For Ubuntu you can use code words like trusty
(14.04), xenial (16.04), and yakkety (17.04). For Debian you can
use values like stable, oldstable, testing, and unstable
or code words like wheezy (7), jesse (8), and stretch (9).

MirrorURL: http://us.archive.ubuntu.com/ubuntu/

The MirrorURL keyword is mandatory. It specifies a URI to use as a
mirror when downloading the OS.

Include: somepackage

The Include keyword is optional. It allows you to install additional
packages into the core operating system. It is a best practice to supply
only the bare essentials such that the %post section has what it
needs to properly complete the build.

Notes

In order to use the debootstrap build module, you must have
debootstrap installed on your system. On Ubuntu you can install it
like so:

$ sudo apt-get update && sudo apt-get install debootstrap

On CentOS you can install it from the epel repos like so:

$ sudo yum update && sudo yum install epel-release && sudo yum install debootstrap.noarch

arch bootstrap agent

This module allows you to build a Arch Linux based container.

Overview

Use the arch module to specify a base for an Arch Linux based
container. Arch Linux uses the aptly named pacman package manager
(all puns intended).

Keywords

Bootstrap: arch

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

The Arch Linux bootstrap module does not name any additional keywords at
this time. By defining the arch module, you have essentially given
all of the information necessary for that particular bootstrap module to
build a core operating system.

Notes

Arch Linux is, by design, a very stripped down, light-weight OS. You may
need to perform a significant amount of configuration to get a usable
OS. Please refer to this README.md [https://github.com/sylabs/singularity/blob/main/examples/arch/README.md]
and the Arch Linux example [https://github.com/sylabs/singularity/blob/main/examples/arch/Singularity]
for more info.

busybox bootstrap agent

This module allows you to build a container based on BusyBox.

Overview

Use the busybox module to specify a BusyBox base for container. You
must also specify a URI for the mirror you would like to use.

Keywords

Bootstrap: busybox

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

MirrorURL: https://www.busybox.net/downloads/binaries/1.26.1-defconfig-multiarch/busybox-x86_64

The MirrorURL keyword is mandatory. It specifies a URI to use as a
mirror when downloading the OS.

Notes

You can build a fully functional BusyBox container that only takes up
~600kB of disk space!

zypper bootstrap agent

This module allows you to build a Suse style container from a mirror
URI.

Note

zypper version 1.11.20 or greater is required on the host system,
as SingularityCE requires the --releasever flag.

Overview

Use the zypper module to specify a base for a Suse-like container.
You must also specify a URI for the mirror you would like to use.

Keywords

Bootstrap: zypper

The Bootstrap keyword is always mandatory. It describes the bootstrap
module to use.

OSVersion: 42.2

The OSVersion keyword is optional. It specifies the OS version you would
like to use. It is only required if you have specified a %{OSVERSION}
variable in the MirrorURL keyword.

Include: somepackage

The Include keyword is optional. It allows you to install additional
packages into the core operating system. It is a best practice to supply
only the bare essentials such that the %post section has what it
needs to properly complete the build. One common package you may want to
install when using the zypper build module is zypper itself.

docker-daemon and docker-archive bootstrap agents

If you are using docker locally there are two options for creating
SingularityCE images without the need for a repository. You can either
build a SIF from a docker-save tar file or you can convert any
docker image present in docker’s daemon internal storage.

Overview

docker-daemon allows you to build a SIF from any docker image
currently residing in docker’s daemon internal storage:

$ docker images alpine
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest 965ea09ff2eb 7 weeks ago 5.55MB

$ singularity run docker-daemon:alpine:latest
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
Getting image source signatures
Copying blob 77cae8ab23bf done
Copying config 759e71f0d3 done
Writing manifest to image destination
Storing signatures
2019/12/11 14:53:24 info unpack layer: sha256:eb7c47c7f0fd0054242f35366d166e6b041dfb0b89e5f93a82ad3a3206222502
INFO: Creating SIF file...
Singularity>

while docker-archive permits you to do the same thing starting from
a docker image stored in a docker-save formatted tar file:

$ docker save -o alpine.tar alpine:latest

$ singularity run docker-archive:$(pwd)/alpine.tar
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
Getting image source signatures
Copying blob 77cae8ab23bf done
Copying config 759e71f0d3 done
Writing manifest to image destination
Storing signatures
2019/12/11 15:25:09 info unpack layer: sha256:eb7c47c7f0fd0054242f35366d166e6b041dfb0b89e5f93a82ad3a3206222502
INFO: Creating SIF file...
Singularity>

Keywords

The docker-daemon bootstrap agent can be used in a SingularityCE
definition file as follows:

From: docker-daemon:<image>:<tag>

where both <image> and <tag> are mandatory fields that must be
written explicitly. The docker-archive bootstrap agent requires
instead the path to the tar file containing the image:

From: docker-archive:<path-to-tar-file>

Note that differently from the docker:// bootstrap agent both
docker-daemon and docker-archive don’t require a double slash
// after the colon in the agent name.

scratch bootstrap agent

The scratch bootstrap agent allows you to start from a completely empty
container. You are then responsible for adding any and all executables,
libraries etc. that are required. Starting with a scratch container can
be useful when you are aiming to minimize container size, and have a
simple application / static binaries.

Overview

A minimal container providing a shell can be created by copying the
busybox static binary into an empty scratch container:

Bootstrap: scratch

%setup
 # Runs on host - fetch static busybox binary
 curl -o /tmp/busybox https://www.busybox.net/downloads/binaries/1.31.0-i686-uclibc/busybox
 # It needs to be executable
 chmod +x /tmp/busybox

%files
 # Copy from host into empty container
 /tmp/busybox /bin/sh

%runscript
 /bin/sh

The resulting container provides a shell, and is 696KiB in size:

$ ls -lah scratch.sif
-rwxr-xr-x. 1 dave dave 696K May 28 13:29 scratch.sif

$ singularity run scratch.sif
WARNING: passwd file doesn't exist in container, not updating
WARNING: group file doesn't exist in container, not updating
Singularity> echo "Hello from a 696KiB container"
Hello from a 696KiB container

Keywords

Bootstrap: scratch

There are no additional keywords for the scratch bootstrap agent.

Command Line Interface

Below are links to the automatically generated CLI docs

	singularity

	singularity build

	singularity cache

	singularity cache clean

	singularity cache list

	singularity capability

	singularity capability add

	singularity capability avail

	singularity capability drop

	singularity capability list

	singularity config

	singularity config fakeroot

	singularity config global

	singularity delete

	singularity exec

	singularity inspect

	singularity instance

	singularity instance list

	singularity instance start

	singularity instance stop

	singularity key

	singularity key export

	singularity key import

	singularity key list

	singularity key newpair

	singularity key pull

	singularity key push

	singularity key remove

	singularity key search

	singularity oci

	singularity oci attach

	singularity oci create

	singularity oci delete

	singularity oci exec

	singularity oci kill

	singularity oci mount

	singularity oci pause

	singularity oci resume

	singularity oci run

	singularity oci start

	singularity oci state

	singularity oci umount

	singularity oci update

	singularity overlay

	singularity overlay create

	singularity plugin

	singularity plugin compile

	singularity plugin create

	singularity plugin disable

	singularity plugin enable

	singularity plugin inspect

	singularity plugin install

	singularity plugin list

	singularity plugin uninstall

	singularity pull

	singularity push

	singularity remote

	singularity remote add

	singularity remote add-keyserver

	singularity remote list

	singularity remote login

	singularity remote logout

	singularity remote remove

	singularity remote remove-keyserver

	singularity remote status

	singularity remote use

	singularity run

	singularity run-help

	singularity search

	singularity shell

	singularity sif

	singularity sif add

	singularity sif del

	singularity sif dump

	singularity sif header

	singularity sif info

	singularity sif list

	singularity sif new

	singularity sif setprim

	singularity sign

	singularity test

	singularity verify

	singularity version

singularity

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Synopsis

Singularity containers provide an application virtualization layer enabling
mobility of compute via both application and environment portability. With
Singularity one is capable of building a root file system that runs on any
other Linux system where Singularity is installed.

singularity [global options...]

Examples

$ singularity help <command> [<subcommand>]
$ singularity help build
$ singularity help instance start

Options

-c, --config string specify a configuration file (for root or unprivileged installation only) (default "/usr/local/etc/singularity/singularity.conf")
-d, --debug print debugging information (highest verbosity)
-h, --help help for singularity
 --nocolor print without color output (default False)
-q, --quiet suppress normal output
-s, --silent only print errors
-v, --verbose print additional information

SEE ALSO

	singularity build - Build a Singularity image

	singularity cache - Manage the local cache

	singularity capability - Manage Linux capabilities for users and groups

	singularity config - Manage various singularity configuration (root user only)

	singularity delete - Deletes requested image from the library

	singularity exec - Run a command within a container

	singularity inspect - Show metadata for an image

	singularity instance - Manage containers running as services

	singularity key - Manage OpenPGP keys

	singularity oci - Manage OCI containers

	singularity overlay - Manage an EXT3 writable overlay image

	singularity plugin - Manage Singularity plugins

	singularity pull - Pull an image from a URI

	singularity push - Upload image to the provided URI

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

	singularity run - Run the user-defined default command within a container

	singularity run-help - Show the user-defined help for an image

	singularity search - Search a Container Library for images

	singularity shell - Run a shell within a container

	singularity sif - Manipulate Singularity Image Format (SIF) images

	singularity sign - Attach digital signature(s) to an image

	singularity test - Run the user-defined tests within a container

	singularity verify - Verify cryptographic signatures attached to an image

	singularity version - Show the version for Singularity

Auto generated by spf13/cobra on 18-Jul-2022

singularity build

Build a Singularity image

Synopsis

IMAGE PATH:

When Singularity builds the container, output can be one of a few formats:

default: The compressed Singularity read only image format (default)
sandbox: This is a read-write container within a directory structure

note: It is a common workflow to use the “sandbox” mode for development of the
container, and then build it as a default Singularity image for production
use. The default format is immutable.

BUILD SPEC:

The build spec target is a definition (def) file, local image, or URI that can
be used to create a Singularity container. Several different local target
formats exist:

def file : This is a recipe for building a container (examples below)
directory: A directory structure containing a (ch)root file system
image: A local image on your machine (will convert to sif if

it is legacy format)

Targets can also be remote and defined by a URI of the following formats:

library:// an image library (default https://cloud.sylabs.io/library)
docker:// a Docker/OCI registry (default Docker Hub)
shub:// a Singularity registry (default Singularity Hub)
oras:// an OCI registry that holds SIF files using ORAS

singularity build [local options...] <IMAGE PATH> <BUILD SPEC>

Examples

DEF FILE BASE OS:

 Library:
 Bootstrap: library
 From: debian:9

 Docker:
 Bootstrap: docker
 From: tensorflow/tensorflow:latest
 IncludeCmd: yes # Use the CMD as runscript instead of ENTRYPOINT

 Singularity Hub:
 Bootstrap: shub
 From: singularityhub/centos

 YUM/RHEL:
 Bootstrap: yum
 OSVersion: 7
 MirrorURL: http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/x86_64/
 Include: yum

 Debian/Ubuntu:
 Bootstrap: debootstrap
 OSVersion: trusty
 MirrorURL: http://us.archive.ubuntu.com/ubuntu/

 Local Image:
 Bootstrap: localimage
 From: /home/dave/starter.img

 Scratch:
 Bootstrap: scratch # Populate the container with a minimal rootfs in %setup

DEFFILE SECTIONS:

 %pre
 echo "This is a scriptlet that will be executed on the host, as root before"
 echo "the container has been bootstrapped. This section is not commonly used."

 %setup
 echo "This is a scriptlet that will be executed on the host, as root, after"
 echo "the container has been bootstrapped. To install things into the container"
 echo "reference the file system location with $SINGULARITY_ROOTFS."

 %post
 echo "This scriptlet section will be executed from within the container after"
 echo "the bootstrap/base has been created and setup."

 %test
 echo "Define any test commands that should be executed after container has been"
 echo "built. This scriptlet will be executed from within the running container"
 echo "as the root user. Pay attention to the exit/return value of this scriptlet"
 echo "as any non-zero exit code will be assumed as failure."
 exit 0

 %runscript
 echo "Define actions for the container to be executed with the run command or"
 echo "when container is executed."

 %startscript
 echo "Define actions for container to perform when started as an instance."

 %labels
 HELLO MOTO
 KEY VALUE

 %files
 /path/on/host/file.txt /path/on/container/file.txt
 relative_file.txt /path/on/container/relative_file.txt

 %environment
 LUKE=goodguy
 VADER=badguy
 HAN=someguy
 export HAN VADER LUKE

 %help
 This is a text file to be displayed with the run-help command.

COMMANDS:

 Build a sif file from a Singularity recipe file:
 $ singularity build /tmp/debian0.sif /path/to/debian.def

 Build a sif image from the Library:
 $ singularity build /tmp/debian1.sif library://debian:latest

 Build a base sandbox from DockerHub, make changes to it, then build sif
 $ singularity build --sandbox /tmp/debian docker://debian:latest
 $ singularity exec --writable /tmp/debian apt-get install python
 $ singularity build /tmp/debian2.sif /tmp/debian

Options

 --arch string architecture for remote build (default "amd64")
-B, --bind strings a user-bind path specification. spec has the format src[:dest[:opts]],where src and dest are outside and inside paths. If dest is not given,it is set equal to src. Mount options ('opts') may be specified as 'ro'(read-only) or 'rw' (read/write, which is the default).Multiple bind paths can be given by a comma separated list. (not supported with remote build)
 --builder string remote Build Service URL, setting this implies --remote
-d, --detached submit build job and print build ID (no real-time logs and requires --remote)
 --disable-cache do not use cache or create cache
 --docker-login login to a Docker Repository interactively
-e, --encrypt build an image with an encrypted file system
-f, --fakeroot build using user namespace to fake root user (requires a privileged installation)
 --fix-perms ensure owner has rwX permissions on all container content for oci/docker sources
-F, --force overwrite an image file if it exists
-h, --help help for build
 --json interpret build definition as JSON
 --library string container Library URL
 --mount stringArray a mount specification e.g. 'type=bind,source=/opt,destination=/hostopt'.
 --no-cleanup do NOT clean up bundle after failed build, can be helpful for debugging
 --no-https use http instead of https for docker:// oras:// and library://<hostname>/... URIs
-T, --notest build without running tests in %test section
 --nv inject host Nvidia libraries during build for post and test sections (not supported with remote build)
 --nvccli use nvidia-container-cli for GPU setup (experimental)
 --passphrase prompt for an encryption passphrase
 --pem-path string enter an path to a PEM formatted RSA key for an encrypted container
-r, --remote build image remotely (does not require root)
 --rocm inject host Rocm libraries during build for post and test sections (not supported with remote build)
-s, --sandbox build image as sandbox format (chroot directory structure)
 --section strings only run specific section(s) of deffile (setup, post, files, environment, test, labels, none) (default [all])
-u, --update run definition over existing container (skips header)
 --writable-tmpfs during the %test section, makes the file system accessible as read-write with non persistent data (with overlay support only)

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity cache

Manage the local cache

Synopsis

Manage your local Singularity cache. You can list/clean using the specific
types.

singularity cache

Examples

All group commands have their own help output:

$ singularity cache
$ singularity cache --help

Options

-h, --help help for cache

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity cache clean - Clean your local Singularity cache
* singularity cache list - List your local Singularity cache

Auto generated by spf13/cobra on 18-Jul-2022

singularity cache clean

Clean your local Singularity cache

Synopsis

This will clean your local cache (stored at $HOME/.singularity/cache if
SINGULARITY_CACHEDIR is not set). By default the entire cache is cleaned, use
–days and –type flags to override this behavior. Note: if you use Singularity
as root, cache will be stored in ‘/root/.singularity/.cache’, to clean that
cache, you will need to run ‘cache clean’ as root, or with ‘sudo’.

singularity cache clean [clean options...]

Examples

All group commands have their own help output:

$ singularity help cache clean --days 30
$ singularity help cache clean --type=library,oci
$ singularity cache clean --help

Options

-D, --days int remove all cache entries older than specified number of days
-n, --dry-run operate in dry run mode and do not actually clean the cache
-f, --force suppress any prompts and clean the cache
-h, --help help for clean
-T, --type strings a list of cache types to clean (possible values: library, oci, shub, blob, net, oras, all) (default [all])

SEE ALSO

	singularity cache - Manage the local cache

Auto generated by spf13/cobra on 18-Jul-2022

singularity cache list

List your local Singularity cache

Synopsis

This will list your local cache (stored at $HOME/.singularity/cache if
SINGULARITY_CACHEDIR is not set).

singularity cache list [list options...]

Examples

All group commands have their own help output:

$ singularity help cache list
$ singularity help cache list --type=library,oci
$ singularity cache list --help

Options

-h, --help help for list
-T, --type strings a list of cache types to display, possible entries: library, oci, shub, blob(s), all (default [all])
-v, --verbose include cache entries in the output

SEE ALSO

	singularity cache - Manage the local cache

Auto generated by spf13/cobra on 18-Jul-2022

singularity capability

Manage Linux capabilities for users and groups

Synopsis

Capabilities allow you to have fine grained control over the permissions that
your containers need to run.

NOTE: capability add/drop commands require root to run. Granting capabilities
to users allows them to escalate privilege inside the container and will
likely give them a route to privilege escalation on the host system as well.
Do not add capabilities to users who should not have root on the host system.

singularity capability

Examples

All group commands have their own help output:

$ singularity help capability add
$ singularity capability add --help

Options

-h, --help help for capability

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity capability add - Add capabilities to a user or group (requires root)
* singularity capability avail - Show description for available capabilities
* singularity capability drop - Remove capabilities from a user or group (requires root)
* singularity capability list - Show capabilities for a given user or group

Auto generated by spf13/cobra on 18-Jul-2022

singularity capability add

Add capabilities to a user or group (requires root)

Synopsis

Add Linux capabilities to a user or group. NOTE: This command requires root to
run.

The capabilities argument must be separated by commas and is not case
sensitive.

To see available capabilities, type “singularity capability avail” or refer to
capabilities manual “man 7 capabilities”.

singularity capability add [add options...] <capabilities>

Examples

$ sudo singularity capability add --user nobody AUDIT_READ,chown
$ sudo singularity capability add --group nobody cap_audit_write

To add all capabilities to a user:

$ sudo singularity capability add --user nobody all

Options

-g, --group string manage capabilities for a group
-h, --help help for add
-u, --user string manage capabilities for a user

SEE ALSO

	singularity capability - Manage Linux capabilities for users and groups

Auto generated by spf13/cobra on 18-Jul-2022

singularity capability avail

Show description for available capabilities

Synopsis

Show description for available Linux capabilities.

singularity capability avail [capabilities]

Examples

Show description for all available capabilities:

$ singularity capability avail

Show CAP_CHOWN description:

$ singularity capability avail CAP_CHOWN

Show CAP_CHOWN/CAP_NET_RAW description:

$ singularity capability avail CAP_CHOWN,CAP_NET_RAW

Options

-h, --help help for avail

SEE ALSO

	singularity capability - Manage Linux capabilities for users and groups

Auto generated by spf13/cobra on 18-Jul-2022

singularity capability drop

Remove capabilities from a user or group (requires root)

Synopsis

Remove Linux capabilities from a user/group. NOTE: This command requires root
to run.

The capabilities argument must be separated by commas and is not case
sensitive.

To see available capabilities, type “singularity capability avail” or refer to
capabilities manual “man 7 capabilities”

singularity capability drop [drop options...] <capabilities>

Examples

$ sudo singularity capability drop --user nobody AUDIT_READ,CHOWN
$ sudo singularity capability drop --group nobody audit_write

To drop all capabilities for a user:

$ sudo singularity capability drop --user nobody all

Options

-g, --group string manage capabilities for a group
-h, --help help for drop
-u, --user string manage capabilities for a user

SEE ALSO

	singularity capability - Manage Linux capabilities for users and groups

Auto generated by spf13/cobra on 18-Jul-2022

singularity capability list

Show capabilities for a given user or group

Synopsis

Show the capabilities for a user or group.

singularity capability list [user/group]

Examples

To list capabilities set for user or group nobody:

$ singularity capability list nobody

To list capabilities for all users/groups:

$ singularity capability list

Options

-h, --help help for list

SEE ALSO

	singularity capability - Manage Linux capabilities for users and groups

Auto generated by spf13/cobra on 18-Jul-2022

singularity config

Manage various singularity configuration (root user only)

Synopsis

The config command allows root user to manage various configuration like fakeroot
user mapping entries.

Examples

All config commands have their own help output:

$ singularity help config fakeroot
$ singularity config fakeroot --help

Options

-h, --help help for config

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity config fakeroot - Manage fakeroot user mappings entries (root user only)
* singularity config global - Edit singularity.conf from command line (root user only or unprivileged installation)

Auto generated by spf13/cobra on 18-Jul-2022

singularity config fakeroot

Manage fakeroot user mappings entries (root user only)

Synopsis

The config fakeroot command allow a root user to add/remove/enable/disable fakeroot
user mappings.

singularity config fakeroot <option> <user>

Examples

To add a fakeroot user mapping for vagrant user:
$ singularity config fakeroot --add vagrant

To remove a fakeroot user mapping for vagrant user:
$ singularity config fakeroot --remove vagrant

To disable a fakeroot user mapping for vagrant user:
$ singularity config fakeroot --disable vagrant

To enable a fakeroot user mapping for vagrant user:
$ singularity config fakeroot --enable vagrant

Options

-a, --add add a fakeroot mapping entry for a user allowing him to use the fakeroot feature
-d, --disable disable a user fakeroot mapping entry preventing him to use the fakeroot feature (the user mapping must be present)
-e, --enable enable a user fakeroot mapping entry allowing him to use the fakeroot feature (the user mapping must be present)
-h, --help help for fakeroot
-r, --remove remove the user fakeroot mapping entry preventing him to use the fakeroot feature

SEE ALSO

	singularity config - Manage various singularity configuration (root user only)

Auto generated by spf13/cobra on 18-Jul-2022

singularity config global

Edit singularity.conf from command line (root user only or unprivileged installation)

Synopsis

The config global command allow administrators to set/unset/get/reset configuration
directives of singularity.conf from command line.

singularity config global <option> <directive> [value,...]

Examples

To add a path to "bind path" directive:
$ singularity config global --set "bind path" /etc/resolv.conf

To remove a path from "bind path" directive:
$ singularity config global --unset "bind path" /etc/resolv.conf

To set "bind path" to the default value:
$ singularity config global --reset "bind path"

To get "bind path" directive value:
$ singularity config global --get "bind path"

To display the resulting configuration instead of writing it to file:
$ singularity config global --dry-run --set "bind path" /etc/resolv.conf

Options

-d, --dry-run dump resulting configuration on stdout but doesn't write it to singularity.conf
-g, --get get value of the configuration directive
-h, --help help for global
-r, --reset reset the configuration directive value to its default value
-s, --set set value of the configuration directive (for multi-value directives, it will add it)
-u, --unset unset value of the configuration directive (for multi-value directives, it will remove matching values)

SEE ALSO

	singularity config - Manage various singularity configuration (root user only)

Auto generated by spf13/cobra on 18-Jul-2022

singularity delete

Deletes requested image from the library

Synopsis

The ‘delete’ command allows you to delete an image from a remote library.

singularity delete [arch] <imageRef> [flags]

Examples

$ singularity delete --arch=amd64 library://username/project/image:1.0

Options

-A, --arch string specify requested image arch (default "amd64")
-F, --force delete image without confirmation
-h, --help help for delete
 --library string delete images from the provided library
 --no-https use http instead of https for docker:// oras:// and library://<hostname>/... URIs

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity exec

Run a command within a container

Synopsis

singularity exec supports the following formats:

*.sif Singularity Image Format (SIF). Native to Singularity 3.0+

*.sqsh SquashFS format. Native to Singularity 2.4+

*.img ext3 format. Native to Singularity versions < 2.4.

	directory/ sandbox format. Directory containing a valid root file
	system and optionally Singularity meta-data.

	instance://* A local running instance of a container. (See the instance
	command group.)

	library://* A SIF container hosted on a Library
	(default https://cloud.sylabs.io/library)

	docker://* A Docker/OCI container hosted on Docker Hub or another
	OCI registry.

shub://* A container hosted on Singularity Hub.

	oras://* A SIF container hosted on an OCI registry that supports
	the OCI Registry As Storage (ORAS) specification.

singularity exec [exec options...] <container> <command>

Examples

$ singularity exec /tmp/debian.sif cat /etc/debian_version
$ singularity exec /tmp/debian.sif python ./hello_world.py
$ cat hello_world.py | singularity exec /tmp/debian.sif python
$ sudo singularity exec --writable /tmp/debian.sif apt-get update
$ singularity exec instance://my_instance ps -ef
$ singularity exec library://centos cat /etc/os-release

Options

 --add-caps string a comma separated capability list to add
 --allow-setuid allow setuid binaries in container (root only)
 --app string set an application to run inside a container
 --apply-cgroups string apply cgroups from file for container processes (root only)
-B, --bind strings a user-bind path specification. spec has the format src[:dest[:opts]], where src and dest are outside and inside paths. If dest is not given, it is set equal to src. Mount options ('opts') may be specified as 'ro' (read-only) or 'rw' (read/write, which is the default). Multiple bind paths can be given by a comma separated list.
-e, --cleanenv clean environment before running container
 --compat apply settings for increased OCI/Docker compatibility. Infers --containall, --no-init, --no-umask, --writable-tmpfs.
-c, --contain use minimal /dev and empty other directories (e.g. /tmp and $HOME) instead of sharing filesystems from your host
-C, --containall contain not only file systems, but also PID, IPC, and environment
 --disable-cache dont use cache, and dont create cache
 --dns string list of DNS server separated by commas to add in resolv.conf
 --docker-login login to a Docker Repository interactively
 --drop-caps string a comma separated capability list to drop
 --env strings pass environment variable to contained process
 --env-file string pass environment variables from file to contained process
-f, --fakeroot run container in new user namespace as uid 0
 --fusemount strings A FUSE filesystem mount specification of the form '<type>:<fuse command> <mountpoint>' - where <type> is 'container' or 'host', specifying where the mount will be performed ('container-daemon' or 'host-daemon' will run the FUSE process detached). <fuse command> is the path to the FUSE executable, plus options for the mount. <mountpoint> is the location in the container to which the FUSE mount will be attached. E.g. 'container:sshfs 10.0.0.1:/ /sshfs'. Implies --pid.
-h, --help help for exec
-H, --home string a home directory specification. spec can either be a src path or src:dest pair. src is the source path of the home directory outside the container and dest overrides the home directory within the container. (default "/home/circleci")
 --hostname string set container hostname
-i, --ipc run container in a new IPC namespace
 --keep-privs let root user keep privileges in container (root only)
 --mount stringArray a mount specification e.g. 'type=bind,source=/opt,destination=/hostopt'.
-n, --net run container in a new network namespace (sets up a bridge network interface by default)
 --network string specify desired network type separated by commas, each network will bring up a dedicated interface inside container (default "bridge")
 --network-args strings specify network arguments to pass to CNI plugins
 --no-home do NOT mount users home directory if /home is not the current working directory
 --no-https use http instead of https for docker:// oras:// and library://<hostname>/... URIs
 --no-init do NOT start shim process with --pid
 --no-mount strings disable one or more mount xxx options set in singularity.conf
 --no-privs drop all privileges from root user in container)
 --no-umask do not propagate umask to the container, set default 0022 umask
 --nv enable Nvidia support
 --nvccli use nvidia-container-cli for GPU setup (experimental)
-o, --overlay strings use an overlayFS image for persistent data storage or as read-only layer of container
 --passphrase prompt for an encryption passphrase
 --pem-path string enter an path to a PEM formatted RSA key for an encrypted container
-p, --pid run container in a new PID namespace
 --pwd string initial working directory for payload process inside the container
 --rocm enable experimental Rocm support
-S, --scratch strings include a scratch directory within the container that is linked to a temporary dir (use -W to force location)
 --security strings enable security features (SELinux, Apparmor, Seccomp)
-u, --userns run container in a new user namespace, allowing Singularity to run completely unprivileged on recent kernels. This disables some features of Singularity, for example it only works with sandbox images.
 --uts run container in a new UTS namespace
 --vm enable VM support
 --vm-cpu string number of CPU cores to allocate to Virtual Machine (implies --vm) (default "1")
 --vm-err enable attaching stderr from VM
 --vm-ip string IP Address to assign for container usage. Defaults to DHCP within bridge network. (default "dhcp")
 --vm-ram string amount of RAM in MiB to allocate to Virtual Machine (implies --vm) (default "1024")
-W, --workdir string working directory to be used for /tmp, /var/tmp and $HOME (if -c/--contain was also used)
-w, --writable by default all Singularity containers are available as read only. This option makes the file system accessible as read/write.
 --writable-tmpfs makes the file system accessible as read-write with non persistent data (with overlay support only)

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity inspect

Show metadata for an image

Synopsis

Inspect will show you labels, environment variables, apps and scripts associated
with the image determined by the flags you pass. By default, they will be shown in
plain text. If you would like to list them in json format, you should use the –json flag.

singularity inspect [inspect options...] <image path>

Examples

$ singularity inspect ubuntu.sif

If you want to list the applications (apps) installed in a container (located at
/scif/apps) you should run inspect command with --list-apps <container-image> flag.
(See https://sci-f.github.io for more information on SCIF apps)

The following environment variables are available to you when called
from the shell inside the container. The top variables are relevant
to the active app (--app <app>) and the bottom available for all
apps regardless of the active app. Both sets of variables are also available during development (at build time).

ACTIVE APP ENVIRONMENT:
 SCIF_APPNAME the name for the active application
 SCIF_APPROOT the installation folder for the application created at /scif/apps/<app>
 SCIF_APPMETA the application metadata folder
 SCIF_APPDATA the data folder created for the application at /scif/data/<app>
 SCIF_APPINPUT expected input folder within data base folder
 SCIF_APPOUTPUT the output data folder within data base folder

 SCIF_APPENV points to the application's custom environment.sh file in its metadata folder
 SCIF_APPLABELS is the application's labels.json in the metadata folder
 SCIF_APPBIN is the bin folder for the app, which is automatically added to the $PATH when the app is active
 SCIF_APPLIB is the application's library folder that is added to the LD_LIBRARY_PATH
 SCIF_APPRUN is the runscript
 SCIF_APPHELP is the help file for the runscript
 SCIF_APPTEST is the testing script (test.sh) associated with the application
 SCIF_APPNAME the name for the active application
 SCIF_APPFILES the files section associated with the application that are added to

GLOBAL APP ENVIRONMENT:

 SCIF_DATA scif defined data base for all apps (/scif/data)
 SCIF_APPS scif defined install bases for all apps (/scif/apps)
 SCIF_APPROOT_<app> root for application <app>
 SCIF_APPDATA_<app> data root for application <app>

To list all your apps:

$ singularity inspect --list-apps ubuntu.sif

To list only labels in the json format from an image:

$ singularity inspect --json --labels ubuntu.sif

To verify you own a single application on your container image, use the --app <appname> flag:

$ singularity inspect --app <appname> ubuntu.sif

Options

 --all show all available data (imply --json option)
 --app string inspect a specific app
-d, --deffile show the Singularity recipe file that was used to generate the image
-e, --environment show the environment settings for the image
-h, --help help for inspect
-H, --helpfile inspect the runscript helpfile, if it exists
-j, --json print structured json instead of sections
-l, --labels show the labels for the image (default)
 --list-apps list all apps in a container
-r, --runscript show the runscript for the image
-s, --startscript show the startscript for the image
-t, --test show the test script for the image

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity instance

Manage containers running as services

Synopsis

Instances allow you to run containers as background processes. This can be
useful for running services such as web servers or databases.

singularity instance

Examples

All group commands have their own help output:

$ singularity help instance start
$ singularity instance start --help

Options

-h, --help help for instance

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity instance list - List all running and named Singularity instances
* singularity instance start - Start a named instance of the given container image
* singularity instance stop - Stop a named instance of a given container image

Auto generated by spf13/cobra on 18-Jul-2022

singularity instance list

List all running and named Singularity instances

Synopsis

The instance list command allows you to view the Singularity container
instances that are currently running in the background.

singularity instance list [list options...] [<instance name glob>]

Examples

$ singularity instance list
INSTANCE NAME PID IMAGE
test 11963 /home/mibauer/singularity/sinstance/test.sif
test2 11964 /home/mibauer/singularity/sinstance/test.sif
lolcow 11965 /home/mibauer/singularity/sinstance/lolcow.sif

$ singularity instance list 'test*'
INSTANCE NAME PID IMAGE
test 11963 /home/mibauer/singularity/sinstance/test.sif
test2 11964 /home/mibauer/singularity/sinstance/test.sif

$ sudo singularity instance list -u mibauer
INSTANCE NAME PID IMAGE
test 11963 /home/mibauer/singularity/sinstance/test.sif
test2 16219 /home/mibauer/singularity/sinstance/test.sif

Options

-h, --help help for list
-j, --json print structured json instead of list
-l, --logs display location of stdout and sterr log files for instances
-u, --user string if running as root, list instances from "<username>"

SEE ALSO

	singularity instance - Manage containers running as services

Auto generated by spf13/cobra on 18-Jul-2022

singularity instance start

Start a named instance of the given container image

Synopsis

The instance start command allows you to create a new named instance from an
existing container image that will begin running in the background. If a
startscript is defined in the container metadata the commands in that script
will be executed with the instance start command as well. You can optionally
pass arguments to startscript

singularity instance start accepts the following container formats

*.sif Singularity Image Format (SIF). Native to Singularity 3.0+

*.sqsh SquashFS format. Native to Singularity 2.4+

*.img ext3 format. Native to Singularity versions < 2.4.

	directory/ sandbox format. Directory containing a valid root file
	system and optionally Singularity meta-data.

	instance://* A local running instance of a container. (See the instance
	command group.)

	library://* A SIF container hosted on a Library
	(default https://cloud.sylabs.io/library)

	docker://* A Docker/OCI container hosted on Docker Hub or another
	OCI registry.

shub://* A container hosted on Singularity Hub.

	oras://* A SIF container hosted on an OCI registry that supports
	the OCI Registry As Storage (ORAS) specification.

singularity instance start [start options...] <container path> <instance name> [startscript args...]

Examples

$ singularity instance start /tmp/my-sql.sif mysql

$ singularity shell instance://mysql
Singularity my-sql.sif> pwd
/home/mibauer/mysql
Singularity my-sql.sif> ps
PID TTY TIME CMD
 1 pts/0 00:00:00 sinit
 2 pts/0 00:00:00 bash
 3 pts/0 00:00:00 ps
Singularity my-sql.sif>

$ singularity instance stop /tmp/my-sql.sif mysql
Stopping /tmp/my-sql.sif mysql

Options

 --add-caps string a comma separated capability list to add
 --allow-setuid allow setuid binaries in container (root only)
 --apply-cgroups string apply cgroups from file for container processes (root only)
-B, --bind strings a user-bind path specification. spec has the format src[:dest[:opts]], where src and dest are outside and inside paths. If dest is not given, it is set equal to src. Mount options ('opts') may be specified as 'ro' (read-only) or 'rw' (read/write, which is the default). Multiple bind paths can be given by a comma separated list.
 --boot execute /sbin/init to boot container (root only)
-e, --cleanenv clean environment before running container
 --compat apply settings for increased OCI/Docker compatibility. Infers --containall, --no-init, --no-umask, --writable-tmpfs.
-c, --contain use minimal /dev and empty other directories (e.g. /tmp and $HOME) instead of sharing filesystems from your host
-C, --containall contain not only file systems, but also PID, IPC, and environment
 --disable-cache dont use cache, and dont create cache
 --dns string list of DNS server separated by commas to add in resolv.conf
 --docker-login login to a Docker Repository interactively
 --drop-caps string a comma separated capability list to drop
 --env strings pass environment variable to contained process
 --env-file string pass environment variables from file to contained process
-f, --fakeroot run container in new user namespace as uid 0
 --fusemount strings A FUSE filesystem mount specification of the form '<type>:<fuse command> <mountpoint>' - where <type> is 'container' or 'host', specifying where the mount will be performed ('container-daemon' or 'host-daemon' will run the FUSE process detached). <fuse command> is the path to the FUSE executable, plus options for the mount. <mountpoint> is the location in the container to which the FUSE mount will be attached. E.g. 'container:sshfs 10.0.0.1:/ /sshfs'. Implies --pid.
-h, --help help for start
-H, --home string a home directory specification. spec can either be a src path or src:dest pair. src is the source path of the home directory outside the container and dest overrides the home directory within the container. (default "/home/circleci")
 --hostname string set container hostname
-i, --ipc run container in a new IPC namespace
 --keep-privs let root user keep privileges in container (root only)
 --mount stringArray a mount specification e.g. 'type=bind,source=/opt,destination=/hostopt'.
-n, --net run container in a new network namespace (sets up a bridge network interface by default)
 --network string specify desired network type separated by commas, each network will bring up a dedicated interface inside container (default "bridge")
 --network-args strings specify network arguments to pass to CNI plugins
 --no-home do NOT mount users home directory if /home is not the current working directory
 --no-https use http instead of https for docker:// oras:// and library://<hostname>/... URIs
 --no-init do NOT start shim process with --pid
 --no-mount strings disable one or more mount xxx options set in singularity.conf
 --no-privs drop all privileges from root user in container)
 --no-umask do not propagate umask to the container, set default 0022 umask
 --nv enable Nvidia support
 --nvccli use nvidia-container-cli for GPU setup (experimental)
-o, --overlay strings use an overlayFS image for persistent data storage or as read-only layer of container
 --passphrase prompt for an encryption passphrase
 --pem-path string enter an path to a PEM formatted RSA key for an encrypted container
 --pid-file string write instance PID to the file with the given name
 --rocm enable experimental Rocm support
-S, --scratch strings include a scratch directory within the container that is linked to a temporary dir (use -W to force location)
 --security strings enable security features (SELinux, Apparmor, Seccomp)
-u, --userns run container in a new user namespace, allowing Singularity to run completely unprivileged on recent kernels. This disables some features of Singularity, for example it only works with sandbox images.
 --uts run container in a new UTS namespace
-W, --workdir string working directory to be used for /tmp, /var/tmp and $HOME (if -c/--contain was also used)
-w, --writable by default all Singularity containers are available as read only. This option makes the file system accessible as read/write.
 --writable-tmpfs makes the file system accessible as read-write with non persistent data (with overlay support only)

SEE ALSO

	singularity instance - Manage containers running as services

Auto generated by spf13/cobra on 18-Jul-2022

singularity instance stop

Stop a named instance of a given container image

Synopsis

The command singularity instance stop allows you to stop and clean up a named,
running instance of a given container image.

singularity instance stop [stop options...] [instance]

Examples

$ singularity instance start my-sql.sif mysql1
$ singularity instance start my-sql.sif mysql2
$ singularity instance stop mysql*
Stopping mysql1 instance of my-sql.sif (PID=23845)
Stopping mysql2 instance of my-sql.sif (PID=23858)

$ singularity instance start my-sql.sif mysql1

Force instance to shutdown
$ singularity instance stop -f mysql1 (may corrupt data)

Send SIGTERM to the instance
$ singularity instance stop -s SIGTERM mysql1
$ singularity instance stop -s TERM mysql1
$ singularity instance stop -s 15 mysql1

Options

-a, --all stop all user's instances
-F, --force force kill instance
-h, --help help for stop
-s, --signal string signal sent to the instance
-t, --timeout int force kill non stopped instances after X seconds (default 10)
-u, --user string if running as root, stop instances belonging to user

SEE ALSO

	singularity instance - Manage containers running as services

Auto generated by spf13/cobra on 18-Jul-2022

singularity key

Manage OpenPGP keys

Synopsis

Manage your trusted, public and private keys in your local or in the global keyring
(local keyring: ‘~/.singularity/sypgp’ if ‘SINGULARITY_SYPGPDIR’ is not set,
global keyring: ‘/usr/local/etc/singularity/global-pgp-public’)

singularity key [key options...]

Examples

All group commands have their own help output:

$ singularity help key newpair
$ singularity key list --help

Options

-h, --help help for key

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity key export - Export a public or private key into a specific file
* singularity key import - Import a local key into the local or global keyring
* singularity key list - List keys in your local or in the global keyring
* singularity key newpair - Create a new key pair
* singularity key pull - Download a public key from a key server
* singularity key push - Upload a public key to a key server
* singularity key remove - Remove a local public key from your local or the global keyring
* singularity key search - Search for keys on a key server

Auto generated by spf13/cobra on 18-Jul-2022

singularity key export

Export a public or private key into a specific file

Synopsis

The ‘key export’ command allows you to export a key and save it to a file.

singularity key export [export options...] <output-file>

Examples

Exporting a private key:

$ singularity key export --secret ./private.asc

Exporting a public key:

$ singularity key export ./public.asc

Options

-a, --armor ascii armored format
-g, --global manage global public keys (import/pull/remove are restricted to root user or unprivileged installation only)
-h, --help help for export
-s, --secret export a secret key

SEE ALSO

	singularity key - Manage OpenPGP keys

Auto generated by spf13/cobra on 18-Jul-2022

singularity key import

Import a local key into the local or global keyring

Synopsis

The ‘key import’ command allows you to add a key to your local or global keyring
from a specific file.

singularity key import [import options...] <input-key>

Examples

$ singularity key import ./my-key.asc

Import into global keyring (root user only)
$ singularity key import --global ./my-key.asc

Options

-g, --global manage global public keys (import/pull/remove are restricted to root user or unprivileged installation only)
-h, --help help for import
 --new-password set a new password to the private key

SEE ALSO

	singularity key - Manage OpenPGP keys

Auto generated by spf13/cobra on 18-Jul-2022

singularity key list

List keys in your local or in the global keyring

Synopsis

List your local keys in your keyring. Will list public (trusted) keys
by default.

singularity key list

Examples

$ singularity key list
$ singularity key list --secret

list global public keys
$ singularity key list --global

Options

-g, --global manage global public keys (import/pull/remove are restricted to root user or unprivileged installation only)
-h, --help help for list
-s, --secret list private keys instead of the default which displays public ones

SEE ALSO

	singularity key - Manage OpenPGP keys

Auto generated by spf13/cobra on 18-Jul-2022

singularity key newpair

Create a new key pair

Synopsis

The ‘key newpair’ command allows you to create a new key or public/private
keys to be stored in the default user local keyring location (e.g.,
$HOME/.singularity/sypgp).

singularity key newpair

Examples

$ singularity key newpair
$ singularity key newpair --password=psk --name=your-name --comment="key comment" --email=mail@email.com --push=false

Options

-b, --bit-length int specify key bit length (default 4096)
-C, --comment string key comment
-E, --email string key owner email
-h, --help help for newpair
-N, --name string key owner name
-P, --password string key password
-U, --push specify to push the public key to the remote keystore (default true)

SEE ALSO

	singularity key - Manage OpenPGP keys

Auto generated by spf13/cobra on 18-Jul-2022

singularity key pull

Download a public key from a key server

Synopsis

The ‘key pull’ command allows you to retrieve public key material from a
remote key server, and add it to your keyring. Note that Singularity consults
your keyring when running commands such as ‘singularity verify’, and thus
adding a key to your keyring implies a level of trust. Because of this, it is
recommended that you verify the fingerprint of the key with its owner prior
to running this command.

singularity key pull [pull options...] <fingerprint>

Examples

$ singularity key pull 8883491F4268F173C6E5DC49EDECE4F3F38D871E

Options

-g, --global manage global public keys (import/pull/remove are restricted to root user or unprivileged installation only)
-h, --help help for pull
-u, --url string specify the key server URL

SEE ALSO

	singularity key - Manage OpenPGP keys

Auto generated by spf13/cobra on 18-Jul-2022

singularity key push

Upload a public key to a key server

Synopsis

The ‘key push’ command allows you to connect to a key server and upload public
keys from the local or the global keyring.

singularity key push [push options...] <fingerprint>

Examples

$ singularity key push 8883491F4268F173C6E5DC49EDECE4F3F38D871E

Options

-g, --global manage global public keys (import/pull/remove are restricted to root user or unprivileged installation only)
-h, --help help for push
-u, --url string specify the key server URL

SEE ALSO

	singularity key - Manage OpenPGP keys

Auto generated by spf13/cobra on 18-Jul-2022

singularity key remove

Remove a local public key from your local or the global keyring

Synopsis

The ‘key remove’ command will remove a local public key from
the local or the global keyring.

singularity key remove <fingerprint>

Examples

$ singularity key remove D87FE3AF5C1F063FCBCC9B02F812842B5EEE5934

Options

-g, --global manage global public keys (import/pull/remove are restricted to root user or unprivileged installation only)
-h, --help help for remove

SEE ALSO

	singularity key - Manage OpenPGP keys

Auto generated by spf13/cobra on 18-Jul-2022

singularity key search

Search for keys on a key server

Synopsis

The ‘key search’ command allows you to connect to a key server and look for
public keys matching the argument passed to the command line. You can
search by name, email, or fingerprint / key ID. (Maximum 100 search entities)

singularity key search [search options...] <search_string>

Examples

$ singularity key search sylabs.io

search by fingerprint:
$ singularity key search 8883491F4268F173C6E5DC49EDECE4F3F38D871E

search by key ID:
$ singularity key search F38D871E

Options

-h, --help help for search
-l, --long-list output long list when searching for keys
-u, --url string specify the key server URL

SEE ALSO

	singularity key - Manage OpenPGP keys

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci

Manage OCI containers

Synopsis

Allow you to manage containers from OCI bundle directories.

NOTE: all oci commands requires to run as root

Examples

All group commands have their own help output:

$ singularity oci create -b ~/bundle mycontainer
$ singularity oci start mycontainer

Options

-h, --help help for oci

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity oci attach - Attach console to a running container process (root user only)
* singularity oci create - Create a container from a bundle directory (root user only)
* singularity oci delete - Delete container (root user only)
* singularity oci exec - Execute a command within container (root user only)
* singularity oci kill - Kill a container (root user only)
* singularity oci mount - Mount create an OCI bundle from SIF image (root user only)
* singularity oci pause - Suspends all processes inside the container (root user only)
* singularity oci resume - Resumes all processes previously paused inside the container (root user only)
* singularity oci run - Create/start/attach/delete a container from a bundle directory (root user only)
* singularity oci start - Start container process (root user only)
* singularity oci state - Query state of a container (root user only)
* singularity oci umount - Umount delete bundle (root user only)
* singularity oci update - Update container cgroups resources (root user only)

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci attach

Attach console to a running container process (root user only)

Synopsis

Attach will attach console to a running container process running within
container identified by container ID.

singularity oci attach <container_ID>

Examples

$ singularity oci attach mycontainer

Options

-h, --help help for attach

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci create

Create a container from a bundle directory (root user only)

Synopsis

Create invoke create operation to create a container instance from an OCI
bundle directory

singularity oci create -b <bundle_path> [create options...] <container_ID>

Examples

$ singularity oci create -b ~/bundle mycontainer

Options

-b, --bundle string specify the OCI bundle path (required)
 --empty-process run container without executing container process (eg: for POD container)
-h, --help help for create
 --log-format string specify the log file format. Available formats are basic, kubernetes and json (default "kubernetes")
-l, --log-path string specify the log file path
 --pid-file string specify the pid file
-s, --sync-socket string specify the path to unix socket for state synchronization

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci delete

Delete container (root user only)

Synopsis

Delete invoke delete operation to delete resources that were created for
container identified by container ID.

singularity oci delete <container_ID>

Examples

$ singularity oci delete mycontainer

Options

-h, --help help for delete

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci exec

Execute a command within container (root user only)

Synopsis

Exec will execute the provided command/arguments within container identified
by container ID.

singularity oci exec <container_ID> <command> <args>

Examples

$ singularity oci exec mycontainer id

Options

-h, --help help for exec

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci kill

Kill a container (root user only)

Synopsis

Kill invoke kill operation to kill processes running within container
identified by container ID.

singularity oci kill [kill options...] <container_ID>

Examples

$ singularity oci kill mycontainer INT
$ singularity oci kill mycontainer -s INT

Options

-f, --force kill container process with SIGKILL
-h, --help help for kill
-s, --signal string signal sent to the container (default "SIGTERM")
-t, --timeout uint32 timeout in second before killing container

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci mount

Mount create an OCI bundle from SIF image (root user only)

Synopsis

Mount will mount and create an OCI bundle from a SIF image.

singularity oci mount <sif_image> <bundle_path>

Examples

$ singularity oci mount /tmp/example.sif /var/lib/singularity/bundles/example

Options

-h, --help help for mount

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci pause

Suspends all processes inside the container (root user only)

Synopsis

Pause will suspend all processes for the specified container ID.

singularity oci pause <container_ID>

Examples

$ singularity oci pause mycontainer

Options

-h, --help help for pause

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci resume

Resumes all processes previously paused inside the container (root user only)

Synopsis

Resume will resume all processes previously paused for the specified container
ID.

singularity oci resume <container_ID>

Examples

$ singularity oci resume mycontainer

Options

-h, --help help for resume

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci run

Create/start/attach/delete a container from a bundle directory (root user only)

Synopsis

Run will invoke equivalent of create/start/attach/delete commands in a row.

singularity oci run -b <bundle_path> [run options...] <container_ID>

Examples

$ singularity oci run -b ~/bundle mycontainer

is equivalent to :

$ singularity oci create -b ~/bundle mycontainer
$ singularity oci start mycontainer
$ singularity oci attach mycontainer
$ singularity oci delete mycontainer

Options

-b, --bundle string specify the OCI bundle path (required)
-h, --help help for run
 --log-format string specify the log file format. Available formats are basic, kubernetes and json (default "kubernetes")
-l, --log-path string specify the log file path
 --pid-file string specify the pid file
-s, --sync-socket string specify the path to unix socket for state synchronization

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci start

Start container process (root user only)

Synopsis

Start invoke start operation to start a previously created container
identified by container ID.

singularity oci start <container_ID>

Examples

$ singularity oci start mycontainer

Options

-h, --help help for start

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci state

Query state of a container (root user only)

Synopsis

State invoke state operation to query state of a created/running/stopped
container identified by container ID.

singularity oci state <container_ID>

Examples

$ singularity oci state mycontainer

Options

-h, --help help for state
-s, --sync-socket string specify the path to unix socket for state synchronization

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci umount

Umount delete bundle (root user only)

Synopsis

Umount will umount an OCI bundle previously mounted with singularity oci
mount.

singularity oci umount <bundle_path>

Examples

$ singularity oci umount /var/lib/singularity/bundles/example

Options

-h, --help help for umount

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity oci update

Update container cgroups resources (root user only)

Synopsis

Update will update cgroups resources for the specified container ID. Container
must be in a RUNNING or CREATED state.

singularity oci update [update options...] <container_ID>

Examples

$ singularity oci update --from-file /tmp/cgroups-update.json mycontainer

or to update from stdin :

$ cat /tmp/cgroups-update.json | singularity oci update --from-file - mycontainer

Options

-f, --from-file string specify path to OCI JSON cgroups resource file ('-' to read from STDIN)
-h, --help help for update

SEE ALSO

	singularity oci - Manage OCI containers

Auto generated by spf13/cobra on 18-Jul-2022

singularity overlay

Manage an EXT3 writable overlay image

Synopsis

The overlay command allows management of EXT3 writable overlay images.

singularity overlay

Examples

All overlay commands have their own help output:

$ singularity help overlay create
$ singularity overlay create --help

Options

-h, --help help for overlay

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity overlay create - Create EXT3 writable overlay image

Auto generated by spf13/cobra on 18-Jul-2022

singularity overlay create

Create EXT3 writable overlay image

Synopsis

The overlay create command allows to create EXT3 writable overlay image either
as a single EXT3 image or by adding it automatically to an existing SIF image.

singularity overlay create <options> image

Examples

To create and add a writable overlay to an existing SIF image:
$ singularity overlay create --size 1024 /tmp/image.sif

To create a single EXT3 writable overlay image:
$ singularity overlay create --size 1024 /tmp/my_overlay.img

Options

 --create-dir strings directory to create as part of the overlay layout
-h, --help help for create
-s, --size int size of the EXT3 writable overlay in MiB (default 64)

SEE ALSO

	singularity overlay - Manage an EXT3 writable overlay image

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin

Manage Singularity plugins

Synopsis

The ‘plugin’ command allows you to manage Singularity plugins which
provide add-on functionality to the default Singularity installation.

singularity plugin [plugin options...]

Examples

All group commands have their own help output:

$ singularity help plugin compile
$ singularity plugin list --help

Options

-h, --help help for plugin

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity plugin compile - Compile a Singularity plugin
* singularity plugin create - Create a plugin skeleton directory
* singularity plugin disable - disable an installed Singularity plugin
* singularity plugin enable - Enable an installed Singularity plugin
* singularity plugin inspect - Inspect a singularity plugin (either an installed one or an image)
* singularity plugin install - Install a compiled Singularity plugin
* singularity plugin list - List installed Singularity plugins
* singularity plugin uninstall - Uninstall removes the named plugin from the system

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin compile

Compile a Singularity plugin

Synopsis

The ‘plugin compile’ command allows a developer to compile a Singularity
plugin in the expected environment. The provided host directory is the
location of the plugin’s source code. A compiled plugin is packed into a SIF file.

singularity plugin compile [compile options...] <host_path>

Examples

$ singularity plugin compile $HOME/singularity/test-plugin

Options

 --disable-minor-check disable minor package version check
-h, --help help for compile
-o, --out string path of the SIF output file

SEE ALSO

	singularity plugin - Manage Singularity plugins

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin create

Create a plugin skeleton directory

Synopsis

The ‘plugin create’ command allows a user to creates a plugin skeleton directory
structure to start development of a new plugin.

singularity plugin create <host_path> <name>

Examples

$ singularity plugin create ~/myplugin github.com/username/myplugin
$ ls -1 ~/myplugin
go.mod
main.go
singularity_source

Options

-h, --help help for create

SEE ALSO

	singularity plugin - Manage Singularity plugins

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin disable

disable an installed Singularity plugin

Synopsis

The ‘plugin disable’ command allows a user to disable a plugin that is already
installed in the system and which has been previously enabled.

singularity plugin disable <name>

Examples

$ singularity plugin disable example.org/plugin

Options

-h, --help help for disable

SEE ALSO

	singularity plugin - Manage Singularity plugins

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin enable

Enable an installed Singularity plugin

Synopsis

The ‘plugin enable’ command allows a user to enable a plugin that is already
installed in the system and which has been previously disabled.

singularity plugin enable <name>

Examples

$ singularity plugin enable example.org/plugin

Options

-h, --help help for enable

SEE ALSO

	singularity plugin - Manage Singularity plugins

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin inspect

Inspect a singularity plugin (either an installed one or an image)

Synopsis

The ‘plugin inspect’ command allows a user to inspect a plugin that is already
installed in the system or an image containing a plugin that is yet to be installed.

singularity plugin inspect (<name>|<image>)

Examples

$ singularity plugin inspect sylabs.io/test-plugin
Name: sylabs.io/test-plugin
Description: A test Singularity plugin.
Author: Sylabs
Version: 0.1.0

Options

-h, --help help for inspect

SEE ALSO

	singularity plugin - Manage Singularity plugins

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin install

Install a compiled Singularity plugin

Synopsis

The ‘plugin install’ command installs the compiled plugin found at plugin_path
into the appropriate directory on the host.

singularity plugin install <plugin_path>

Examples

$ singularity plugin install $HOME/singularity/test-plugin/test-plugin.sif

Options

-h, --help help for install

SEE ALSO

	singularity plugin - Manage Singularity plugins

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin list

List installed Singularity plugins

Synopsis

The ‘plugin list’ command lists the Singularity plugins installed on the host.

singularity plugin list [list options...]

Examples

$ singularity plugin list
ENABLED NAME
 yes example.org/plugin

Options

-h, --help help for list

SEE ALSO

	singularity plugin - Manage Singularity plugins

Auto generated by spf13/cobra on 18-Jul-2022

singularity plugin uninstall

Uninstall removes the named plugin from the system

Synopsis

The ‘plugin uninstall’ command removes the named plugin from the system

singularity plugin uninstall <name>

Examples

$ singularity plugin uninstall example.org/plugin

Options

-h, --help help for uninstall

SEE ALSO

	singularity plugin - Manage Singularity plugins

Auto generated by spf13/cobra on 18-Jul-2022

singularity pull

Pull an image from a URI

Synopsis

The ‘pull’ command allows you to download or build a container from a given
URI. Supported URIs include:

	library: Pull an image from the currently configured library
	library://user/collection/container[:tag]

	docker: Pull a Docker/OCI image from Docker Hub, or another OCI registry.
	docker://user/image:tag

	shub: Pull an image from Singularity Hub
	shub://user/image:tag

	oras: Pull a SIF image from an OCI registry that supports ORAS.
	oras://registry/namespace/image:tag

	http, https: Pull an image using the http(s?) protocol
	https://library.sylabs.io/v1/imagefile/library/default/alpine:latest

singularity pull [pull options...] [output file] <URI>

Examples

From Sylabs cloud library
$ singularity pull alpine.sif library://alpine:latest

From Docker
$ singularity pull tensorflow.sif docker://tensorflow/tensorflow:latest

From Shub
$ singularity pull singularity-images.sif shub://vsoch/singularity-images

From supporting OCI registry (e.g. Azure Container Registry)
$ singularity pull image.sif oras://<username>.azurecr.io/namespace/image:tag

Options

 --arch string architecture to pull from library (default "amd64")
 --dir string download images to the specific directory
 --disable-cache dont use cached images/blobs and dont create them
 --docker-login login to a Docker Repository interactively
-F, --force overwrite an image file if it exists
-h, --help help for pull
 --library string download images from the provided library
 --no-cleanup do NOT clean up bundle after failed build, can be helpful for debugging
 --no-https use http instead of https for docker:// oras:// and library://<hostname>/... URIs

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity push

Upload image to the provided URI

Synopsis

The ‘push’ command allows you to upload a SIF container to a given
URI. Supported URIs include:

	library:
	library://user/collection/container[:tag]

	oras:
	oras://registry/namespace/repo:tag

NOTE: It’s always good practice to sign your containers before
pushing them to the library. An auth token is required to push to the library,
so you may need to configure it first with ‘singularity remote’.

singularity push [push options...] <image> <URI>

Examples

To Library
$ singularity push /home/user/my.sif library://user/collection/my.sif:latest

To supported OCI registry
$ singularity push /home/user/my.sif oras://registry/namespace/image:tag

Options

-U, --allow-unsigned do not require a signed container image
-D, --description string description for container image (library:// only)
-h, --help help for push
 --library string the library to push to

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote

Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Synopsis

The ‘remote’ command allows you to manage Singularity remote endpoints,
standalone keyservers and OCI/Docker registry credentials through its
subcommands.

A ‘remote endpoint’ is the Sylabs Cloud, a Singularity Enterprise installation,
or a compatible group of services. The remote endpoint is a single address,
e.g. ‘cloud.sylabs.io’ through which linked library, builder and keystore
sevices will be automatically discovered.

To configure a remote endpoint you must ‘remote add’ it. You can ‘remote login’ if
you will be performing actions needing authentication. Switch between
configured remote endpoints with the ‘remote use’ command. The active remote
endpoint will be used for remote builds, key operations, and ‘library://’ pull
and push. You can also ‘remote logout’ from and ‘remote remove’ an endpoint that
is no longer required.

To configure credentials for OCI registries that should be used when pulling or
pushing from/to ‘docker://’’ or ‘oras://’ URIs, use the ‘remote login’ command
only. You do not have to ‘remote add’ OCI registries. To remove credentials
‘remote logout’ with the same URI. You do not need to ‘remote remove’ OCI
credentials.

The remote configuration is stored in $HOME/.singularity/remotes.yaml by default.

Examples

All group commands have their own help output:

 $ singularity help remote list
 $ singularity remote list

Options

-c, --config string path to the file holding remote endpoint configurations (default "/home/circleci/.singularity/remote.yaml")
-h, --help help for remote

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity remote add - Add a new singularity remote endpoint
* singularity remote add-keyserver - Add a keyserver (root user only)
* singularity remote list - List all singularity remote endpoints, keyservers, and OCI credentials that are configured
* singularity remote login - Login to a singularity remote endpoint, an OCI/Docker registry or a keyserver using credentials
* singularity remote logout - Log out from a singularity remote endpoint, an OCI/Docker registry or a keyserver
* singularity remote remove - Remove an existing singularity remote endpoint
* singularity remote remove-keyserver - Remove a keyserver (root user only)
* singularity remote status - Check the status of the singularity services at an endpoint, and your authentication token
* singularity remote use - Set a singularity remote endpoint to be actively used

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote add

Add a new singularity remote endpoint

Synopsis

The ‘remote add’ command allows you to add a new remote endpoint to be
be used for singularity remote services. Authentication with a newly created
endpoint will occur automatically.

singularity remote add [add options...] <remote_name> <remote_URI>

Examples

$ singularity remote add SylabsCloud cloud.sylabs.io

Options

-g, --global edit the list of globally configured remote endpoints
-h, --help help for add
-i, --insecure allow connection to an insecure http remote
 --no-login skip automatic login step
 --tokenfile string path to the file holding auth token for login (remote endpoints only)

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote add-keyserver

Add a keyserver (root user only)

Synopsis

The ‘remote add-keyserver’ command allows to define additional keyserver. The –order
option can define the order of the keyserver for all related key operations, therefore
when specifying ‘–order 1’ the keyserver is becoming the primary keyserver. If no endpoint
is specified, it will use the default remote endpoint (SylabsCloud).

singularity remote add-keyserver [options] [remoteName] <keyserver_url>

Examples

$ singularity remote add-keyserver https://keys.example.com

To add a keyserver to be used as the primary keyserver for the current endpoint
$ singularity remote add-keyserver --order 1 https://keys.example.com

Options

-h, --help help for add-keyserver
-i, --insecure allow insecure connection to keyserver
-o, --order uint32 define the keyserver order

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote list

List all singularity remote endpoints, keyservers, and OCI credentials that are configured

Synopsis

The ‘remote list’ command lists all remote endpoints, keyservers, and OCI registry
credentials configured for use.

The current remote is indicated by ‘YES’ in the ‘ACTIVE’ column and can be changed
with the ‘remote use’ command.

singularity remote list

Examples

$ singularity remote list

Options

-h, --help help for list

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote login

Login to a singularity remote endpoint, an OCI/Docker registry or a keyserver using credentials

Synopsis

The ‘remote login’ command allows you to set credentials for a specific endpoint,
an OCI/Docker registry or a keyserver.

If no endpoint or registry is specified, the command will login to the currently
active remote endpoint. This is cloud.sylabs.io by default.

singularity remote login [login options...] <remote_name|registry_uri>

Examples

To log in to an endpoint:
$ singularity remote login SylabsCloud

To login in to a docker/OCI registry:
$ singularity remote login --username foo docker://docker.io
$ singularity remote login --username foo oras://myregistry.example.com

Note that many cloud OCI registries use token based authentication. The token
should be specified as the password for login. A username is still required. E.g.
when using a standard Azure identity and token to login to an ACR registry the
username '00000000-0000-0000-0000-000000000000' is required. Consult your provider
documentation for detail of their login requirements.

Options

-h, --help help for login
-i, --insecure allow insecure login
-p, --password string password / token to authenticate with
 --password-stdin take password from standard input
 --tokenfile string path to the file holding auth token for login (remote endpoints only)
-u, --username string username to authenticate with (required for Docker/OCI registry login)

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote logout

Log out from a singularity remote endpoint, an OCI/Docker registry or a keyserver

Synopsis

The ‘remote logout’ command allows you to log out from a singularity specific endpoint,
an OCI/Docker registry or a keyserver. If no endpoint or service is specified, it will
logout from the current active remote endpoint.

singularity remote logout <remote_name|registry_uri>

Examples

To log out from an endpoint
$ singularity remote logout SylabsCloud

To log out from a docker/OCI registry
$ singularity remote logout docker://docker.io

Options

-h, --help help for logout

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote remove

Remove an existing singularity remote endpoint

Synopsis

The ‘remote remove’ command allows you to remove an existing remote endpoint
from the list of potential endpoints to use.

singularity remote remove [remove options...] <remote_name>

Examples

$ singularity remote remove SylabsCloud

Options

-g, --global edit the list of globally configured remote endpoints
-h, --help help for remove

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote remove-keyserver

Remove a keyserver (root user only)

Synopsis

The ‘remote remove-keyserver’ command allows to remove a defined keyserver from a specific
endpoint. If no endpoint is specified, it will use the default remote endpoint (SylabsCloud).

singularity remote remove-keyserver [remoteName] <keyserver_url>

Examples

$ singularity remote remove-keyserver https://keys.example.com

Options

-h, --help help for remove-keyserver

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote status

Check the status of the singularity services at an endpoint, and your authentication token

Synopsis

The ‘remote status’ command checks the status of the specified remote endpoint
and reports the availability of services and their versions. If no endpoint is
specified, it will check the status of the default remote (SylabsCloud). If you
have logged in with an authentication token the validity of that token will be
checked.

singularity remote status [remote_name]

Examples

$ singularity remote status SylabsCloud

Options

-h, --help help for status

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity remote use

Set a singularity remote endpoint to be actively used

Synopsis

The ‘remote use’ command sets the remote to be used by default by any command
that interacts with Singularity services.

singularity remote use [use options...] <remote_name>

Examples

$ singularity remote use SylabsCloud

Options

-e, --exclusive set the endpoint as exclusive (root user only, imply --global)
-g, --global edit the list of globally configured remote endpoints
-h, --help help for use

SEE ALSO

	singularity remote - Manage singularity remote endpoints, keyservers and OCI/Docker registry credentials

Auto generated by spf13/cobra on 18-Jul-2022

singularity run

Run the user-defined default command within a container

Synopsis

This command will launch a Singularity container and execute a runscript
if one is defined for that container. The runscript is a metadata file within
the container that contains shell commands. If the file is present (and
executable) then this command will execute that file within the container
automatically. All arguments following the container name will be passed
directly to the runscript.

singularity run accepts the following container formats:

*.sif Singularity Image Format (SIF). Native to Singularity 3.0+

*.sqsh SquashFS format. Native to Singularity 2.4+

*.img ext3 format. Native to Singularity versions < 2.4.

	directory/ sandbox format. Directory containing a valid root file
	system and optionally Singularity meta-data.

	instance://* A local running instance of a container. (See the instance
	command group.)

	library://* A SIF container hosted on a Library
	(default https://cloud.sylabs.io/library)

	docker://* A Docker/OCI container hosted on Docker Hub or another
	OCI registry.

shub://* A container hosted on Singularity Hub.

	oras://* A SIF container hosted on an OCI registry that supports
	the OCI Registry As Storage (ORAS) specification.

singularity run [run options...] <container>

Examples

Here we see that the runscript prints "Hello world: "
$ singularity exec /tmp/debian.sif cat /singularity
#!/bin/sh
echo "Hello world: "

It runs with our inputs when we run the image
$ singularity run /tmp/debian.sif one two three
Hello world: one two three

Note that this does the same thing
$./tmp/debian.sif one two three

Options

 --add-caps string a comma separated capability list to add
 --allow-setuid allow setuid binaries in container (root only)
 --app string set an application to run inside a container
 --apply-cgroups string apply cgroups from file for container processes (root only)
-B, --bind strings a user-bind path specification. spec has the format src[:dest[:opts]], where src and dest are outside and inside paths. If dest is not given, it is set equal to src. Mount options ('opts') may be specified as 'ro' (read-only) or 'rw' (read/write, which is the default). Multiple bind paths can be given by a comma separated list.
-e, --cleanenv clean environment before running container
 --compat apply settings for increased OCI/Docker compatibility. Infers --containall, --no-init, --no-umask, --writable-tmpfs.
-c, --contain use minimal /dev and empty other directories (e.g. /tmp and $HOME) instead of sharing filesystems from your host
-C, --containall contain not only file systems, but also PID, IPC, and environment
 --disable-cache dont use cache, and dont create cache
 --dns string list of DNS server separated by commas to add in resolv.conf
 --docker-login login to a Docker Repository interactively
 --drop-caps string a comma separated capability list to drop
 --env strings pass environment variable to contained process
 --env-file string pass environment variables from file to contained process
-f, --fakeroot run container in new user namespace as uid 0
 --fusemount strings A FUSE filesystem mount specification of the form '<type>:<fuse command> <mountpoint>' - where <type> is 'container' or 'host', specifying where the mount will be performed ('container-daemon' or 'host-daemon' will run the FUSE process detached). <fuse command> is the path to the FUSE executable, plus options for the mount. <mountpoint> is the location in the container to which the FUSE mount will be attached. E.g. 'container:sshfs 10.0.0.1:/ /sshfs'. Implies --pid.
-h, --help help for run
-H, --home string a home directory specification. spec can either be a src path or src:dest pair. src is the source path of the home directory outside the container and dest overrides the home directory within the container. (default "/home/circleci")
 --hostname string set container hostname
-i, --ipc run container in a new IPC namespace
 --keep-privs let root user keep privileges in container (root only)
 --mount stringArray a mount specification e.g. 'type=bind,source=/opt,destination=/hostopt'.
-n, --net run container in a new network namespace (sets up a bridge network interface by default)
 --network string specify desired network type separated by commas, each network will bring up a dedicated interface inside container (default "bridge")
 --network-args strings specify network arguments to pass to CNI plugins
 --no-home do NOT mount users home directory if /home is not the current working directory
 --no-https use http instead of https for docker:// oras:// and library://<hostname>/... URIs
 --no-init do NOT start shim process with --pid
 --no-mount strings disable one or more mount xxx options set in singularity.conf
 --no-privs drop all privileges from root user in container)
 --no-umask do not propagate umask to the container, set default 0022 umask
 --nv enable Nvidia support
 --nvccli use nvidia-container-cli for GPU setup (experimental)
-o, --overlay strings use an overlayFS image for persistent data storage or as read-only layer of container
 --passphrase prompt for an encryption passphrase
 --pem-path string enter an path to a PEM formatted RSA key for an encrypted container
-p, --pid run container in a new PID namespace
 --pwd string initial working directory for payload process inside the container
 --rocm enable experimental Rocm support
-S, --scratch strings include a scratch directory within the container that is linked to a temporary dir (use -W to force location)
 --security strings enable security features (SELinux, Apparmor, Seccomp)
-u, --userns run container in a new user namespace, allowing Singularity to run completely unprivileged on recent kernels. This disables some features of Singularity, for example it only works with sandbox images.
 --uts run container in a new UTS namespace
 --vm enable VM support
 --vm-cpu string number of CPU cores to allocate to Virtual Machine (implies --vm) (default "1")
 --vm-err enable attaching stderr from VM
 --vm-ip string IP Address to assign for container usage. Defaults to DHCP within bridge network. (default "dhcp")
 --vm-ram string amount of RAM in MiB to allocate to Virtual Machine (implies --vm) (default "1024")
-W, --workdir string working directory to be used for /tmp, /var/tmp and $HOME (if -c/--contain was also used)
-w, --writable by default all Singularity containers are available as read only. This option makes the file system accessible as read/write.
 --writable-tmpfs makes the file system accessible as read-write with non persistent data (with overlay support only)

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity run-help

Show the user-defined help for an image

Synopsis

The help text is from the ‘%help’ section of the definition file. If you are
using the ‘–apps’ option, the help text is instead from that app’s ‘%apphelp’
section.

singularity run-help <image path>

Examples

$ cat my_container.def
Bootstrap: docker
From: busybox

%help
 Some help for this container

%apphelp foo
 Some help for application 'foo' in this container

$ sudo singularity build my_container.sif my_container.def
Using container recipe deffile: my_container.def
[...snip...]
Cleaning up...

$ singularity run-help my_container.sif

 Some help for this container

$ singularity run-help --app foo my_container.sif

 Some help for application in this container

Options

 --app string show the help for an app
-h, --help help for run-help

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity search

Search a Container Library for images

Synopsis

Search a Container Library for container images matching the search query.
(default cloud.sylabs.io). You can specify an alternate architecture, and/or limit
the results to only signed images.

singularity search [search options...] <search_query>

Examples

$ singularity search lolcow
$ singularity search --arch arm64 alpine
$ singularity search --signed tensorflow

Options

 --arch string architecture to search for (default "amd64")
-h, --help help for search
 --library string URI for library to search
 --signed architecture to search for

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity shell

Run a shell within a container

Synopsis

singularity shell supports the following formats:

*.sif Singularity Image Format (SIF). Native to Singularity 3.0+

*.sqsh SquashFS format. Native to Singularity 2.4+

*.img ext3 format. Native to Singularity versions < 2.4.

	directory/ sandbox format. Directory containing a valid root file
	system and optionally Singularity meta-data.

	instance://* A local running instance of a container. (See the instance
	command group.)

	library://* A SIF container hosted on a Library
	(default https://cloud.sylabs.io/library)

	docker://* A Docker/OCI container hosted on Docker Hub or another
	OCI registry.

shub://* A container hosted on Singularity Hub.

	oras://* A SIF container hosted on an OCI registry that supports
	the OCI Registry As Storage (ORAS) specification.

singularity shell [shell options...] <container>

Examples

$ singularity shell /tmp/Debian.sif
Singularity/Debian.sif> pwd
/home/gmk/test
Singularity/Debian.sif> exit

$ singularity shell -C /tmp/Debian.sif
Singularity/Debian.sif> pwd
/home/gmk
Singularity/Debian.sif> ls -l
total 0
Singularity/Debian.sif> exit

$ sudo singularity shell -w /tmp/Debian.sif
$ sudo singularity shell --writable /tmp/Debian.sif

$ singularity shell instance://my_instance

$ singularity shell instance://my_instance
Singularity: Invoking an interactive shell within container...
Singularity container:~> ps -ef
UID PID PPID C STIME TTY TIME CMD
ubuntu 1 0 0 20:00 ? 00:00:00 /usr/local/bin/singularity/bin/sinit
ubuntu 2 0 0 20:01 pts/8 00:00:00 /bin/bash --norc
ubuntu 3 2 0 20:02 pts/8 00:00:00 ps -ef

Options

 --add-caps string a comma separated capability list to add
 --allow-setuid allow setuid binaries in container (root only)
 --app string set an application to run inside a container
 --apply-cgroups string apply cgroups from file for container processes (root only)
-B, --bind strings a user-bind path specification. spec has the format src[:dest[:opts]], where src and dest are outside and inside paths. If dest is not given, it is set equal to src. Mount options ('opts') may be specified as 'ro' (read-only) or 'rw' (read/write, which is the default). Multiple bind paths can be given by a comma separated list.
-e, --cleanenv clean environment before running container
 --compat apply settings for increased OCI/Docker compatibility. Infers --containall, --no-init, --no-umask, --writable-tmpfs.
-c, --contain use minimal /dev and empty other directories (e.g. /tmp and $HOME) instead of sharing filesystems from your host
-C, --containall contain not only file systems, but also PID, IPC, and environment
 --disable-cache dont use cache, and dont create cache
 --dns string list of DNS server separated by commas to add in resolv.conf
 --docker-login login to a Docker Repository interactively
 --drop-caps string a comma separated capability list to drop
 --env strings pass environment variable to contained process
 --env-file string pass environment variables from file to contained process
-f, --fakeroot run container in new user namespace as uid 0
 --fusemount strings A FUSE filesystem mount specification of the form '<type>:<fuse command> <mountpoint>' - where <type> is 'container' or 'host', specifying where the mount will be performed ('container-daemon' or 'host-daemon' will run the FUSE process detached). <fuse command> is the path to the FUSE executable, plus options for the mount. <mountpoint> is the location in the container to which the FUSE mount will be attached. E.g. 'container:sshfs 10.0.0.1:/ /sshfs'. Implies --pid.
-h, --help help for shell
-H, --home string a home directory specification. spec can either be a src path or src:dest pair. src is the source path of the home directory outside the container and dest overrides the home directory within the container. (default "/home/circleci")
 --hostname string set container hostname
-i, --ipc run container in a new IPC namespace
 --keep-privs let root user keep privileges in container (root only)
 --mount stringArray a mount specification e.g. 'type=bind,source=/opt,destination=/hostopt'.
-n, --net run container in a new network namespace (sets up a bridge network interface by default)
 --network string specify desired network type separated by commas, each network will bring up a dedicated interface inside container (default "bridge")
 --network-args strings specify network arguments to pass to CNI plugins
 --no-home do NOT mount users home directory if /home is not the current working directory
 --no-https use http instead of https for docker:// oras:// and library://<hostname>/... URIs
 --no-init do NOT start shim process with --pid
 --no-mount strings disable one or more mount xxx options set in singularity.conf
 --no-privs drop all privileges from root user in container)
 --no-umask do not propagate umask to the container, set default 0022 umask
 --nv enable Nvidia support
 --nvccli use nvidia-container-cli for GPU setup (experimental)
-o, --overlay strings use an overlayFS image for persistent data storage or as read-only layer of container
 --passphrase prompt for an encryption passphrase
 --pem-path string enter an path to a PEM formatted RSA key for an encrypted container
-p, --pid run container in a new PID namespace
 --pwd string initial working directory for payload process inside the container
 --rocm enable experimental Rocm support
-S, --scratch strings include a scratch directory within the container that is linked to a temporary dir (use -W to force location)
 --security strings enable security features (SELinux, Apparmor, Seccomp)
-s, --shell string path to program to use for interactive shell
 --syos execute SyOS shell
-u, --userns run container in a new user namespace, allowing Singularity to run completely unprivileged on recent kernels. This disables some features of Singularity, for example it only works with sandbox images.
 --uts run container in a new UTS namespace
 --vm enable VM support
 --vm-cpu string number of CPU cores to allocate to Virtual Machine (implies --vm) (default "1")
 --vm-err enable attaching stderr from VM
 --vm-ip string IP Address to assign for container usage. Defaults to DHCP within bridge network. (default "dhcp")
 --vm-ram string amount of RAM in MiB to allocate to Virtual Machine (implies --vm) (default "1024")
-W, --workdir string working directory to be used for /tmp, /var/tmp and $HOME (if -c/--contain was also used)
-w, --writable by default all Singularity containers are available as read only. This option makes the file system accessible as read/write.
 --writable-tmpfs makes the file system accessible as read-write with non persistent data (with overlay support only)

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif

Manipulate Singularity Image Format (SIF) images

Synopsis

A set of commands are provided to display elements such as the SIF global
header, the data object descriptors and to dump data objects. It is also
possible to modify a SIF file via this tool via the add/del commands.

Examples

All sif commands have their own help output:

$ singularity help sif list
$ singularity sif list --help

Options

-h, --help help for sif

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)
* singularity sif add - Add data object
* singularity sif del - Delete data object
* singularity sif dump - Dump data object
* singularity sif header - Display global header
* singularity sif info - Display data object info
* singularity sif list - List data objects
* singularity sif new - Create SIF image
* singularity sif setprim - Set primary system partition

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif add

Add data object

Synopsis

Add a data object to a SIF image.

singularity sif add <sif_path> <object_path> [flags]

Examples

sif add image.sif recipe.def -datatype 1
sif add image.sif rootfs.squashfs --datatype 4 --parttype 1 --partfs 1 ----partarch 2
sif add image.sif signature.bin -datatype 5 --signentity 433FE984155206BD962725E20E8713472A879943 --signhash 1

Options

 --alignment int set alignment constraint [default: aligned on page size]
 --datatype int the type of data to add
 [NEEDED, no default]:
 1-Deffile, 2-EnvVar, 3-Labels,
 4-Partition, 5-Signature, 6-GenericJSON,
 7-Generic, 8-CryptoMessage
 --filename string set logical filename/handle [default: input filename]
 --groupid uint32 set groupid [default: 0]
-h, --help help for add
 --link uint32 set link pointer [default: 0]
 --partarch int32 the main architecture used (with -datatype 4-Partition)
 [NEEDED, no default]:
 1-386, 2-amd64, 3-arm,
 4-arm64, 5-ppc64, 6-ppc64le,
 7-mips, 8-mipsle, 9-mips64,
 10-mips64le, 11-s390x
 --partfs int32 the filesystem used (with -datatype 4-Partition)
 [NEEDED, no default]:
 1-Squash, 2-Ext3, 3-ImmuObj,
 4-Raw
 --parttype int32 the type of partition (with -datatype 4-Partition)
 [NEEDED, no default]:
 1-System, 2-PrimSys, 3-Data,
 4-Overlay
 --signentity string the entity that signs (with -datatype 5-Signature)
 [NEEDED, no default]:
 example: 433FE984155206BD962725E20E8713472A879943
 --signhash int32 the signature hash used (with -datatype 5-Signature)
 [NEEDED, no default]:
 1-SHA256, 2-SHA384, 3-SHA512,
 4-BLAKE2s_256, 5-BLAKE2b_256

SEE ALSO

	singularity sif - Manipulate Singularity Image Format (SIF) images

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif del

Delete data object

Synopsis

Delete a data object from a SIF image.

singularity sif del <id> <sif_path>

Examples

sif del 1 image.sif

Options

-h, --help help for del

SEE ALSO

	singularity sif - Manipulate Singularity Image Format (SIF) images

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif dump

Dump data object

Synopsis

Dump a data object from a SIF image.

singularity sif dump <id> <sif_path>

Examples

sif dump 1 image.sif

Options

-h, --help help for dump

SEE ALSO

	singularity sif - Manipulate Singularity Image Format (SIF) images

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif header

Display global header

Synopsis

Display global header from a SIF image.

singularity sif header <sif_path>

Examples

sif header image.sif

Options

-h, --help help for header

SEE ALSO

	singularity sif - Manipulate Singularity Image Format (SIF) images

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif info

Display data object info

Synopsis

Display info about a data object from a SIF image.

singularity sif info <id> <sif_path>

Examples

sif info 1 image.sif

Options

-h, --help help for info

SEE ALSO

	singularity sif - Manipulate Singularity Image Format (SIF) images

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif list

List data objects

Synopsis

List data objects from a SIF image.

singularity sif list <sif_path>

Examples

sif list image.sif

Options

-h, --help help for list

SEE ALSO

	singularity sif - Manipulate Singularity Image Format (SIF) images

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif new

Create SIF image

Synopsis

Create a new, empty SIF image.

singularity sif new <sif_path>

Examples

sif new image.sif

Options

-h, --help help for new

SEE ALSO

	singularity sif - Manipulate Singularity Image Format (SIF) images

Auto generated by spf13/cobra on 18-Jul-2022

singularity sif setprim

Set primary system partition

Synopsis

Set the primary system partition in a SIF image.

singularity sif setprim <id> <sif_path>

Examples

sif setprim 1 image.sif

Options

-h, --help help for setprim

SEE ALSO

	singularity sif - Manipulate Singularity Image Format (SIF) images

Auto generated by spf13/cobra on 18-Jul-2022

singularity sign

Attach digital signature(s) to an image

Synopsis

The sign command allows a user to add one or more digital signatures to a SIF
image. By default, one digital signature is added for each object group in
the file.

To generate a key pair, see ‘singularity help key newpair’

singularity sign [sign options...] <image path>

Examples

$ singularity sign container.sif

Options

-g, --group-id uint32 sign objects with the specified group ID
-h, --help help for sign
-k, --keyidx int private key to use (index from 'key list --secret')
-i, --sif-id uint32 sign object with the specified ID

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity test

Run the user-defined tests within a container

Synopsis

The ‘test’ command allows you to execute a testscript (if available) inside of
a given container

	NOTE:
	For instances if there is a daemon process running inside the container,
then subsequent container commands will all run within the same
namespaces. This means that the –writable and –contain options will not
be honored as the namespaces have already been configured by the
‘singularity start’ command.

singularity test [exec options...] <image path>

Examples

Set the '%test' section with a definition file like so:
%test
 echo "hello from test" "$@"

$ singularity test /tmp/debian.sif command
 hello from test command

For additional help, please visit our public documentation pages which are
found at:

 https://www.sylabs.io/docs/

Options

 --add-caps string a comma separated capability list to add
 --allow-setuid allow setuid binaries in container (root only)
 --app string set an application to run inside a container
 --apply-cgroups string apply cgroups from file for container processes (root only)
-B, --bind strings a user-bind path specification. spec has the format src[:dest[:opts]], where src and dest are outside and inside paths. If dest is not given, it is set equal to src. Mount options ('opts') may be specified as 'ro' (read-only) or 'rw' (read/write, which is the default). Multiple bind paths can be given by a comma separated list.
-e, --cleanenv clean environment before running container
 --compat apply settings for increased OCI/Docker compatibility. Infers --containall, --no-init, --no-umask, --writable-tmpfs.
-c, --contain use minimal /dev and empty other directories (e.g. /tmp and $HOME) instead of sharing filesystems from your host
-C, --containall contain not only file systems, but also PID, IPC, and environment
 --disable-cache dont use cache, and dont create cache
 --dns string list of DNS server separated by commas to add in resolv.conf
 --docker-login login to a Docker Repository interactively
 --drop-caps string a comma separated capability list to drop
 --env strings pass environment variable to contained process
 --env-file string pass environment variables from file to contained process
-f, --fakeroot run container in new user namespace as uid 0
 --fusemount strings A FUSE filesystem mount specification of the form '<type>:<fuse command> <mountpoint>' - where <type> is 'container' or 'host', specifying where the mount will be performed ('container-daemon' or 'host-daemon' will run the FUSE process detached). <fuse command> is the path to the FUSE executable, plus options for the mount. <mountpoint> is the location in the container to which the FUSE mount will be attached. E.g. 'container:sshfs 10.0.0.1:/ /sshfs'. Implies --pid.
-h, --help help for test
-H, --home string a home directory specification. spec can either be a src path or src:dest pair. src is the source path of the home directory outside the container and dest overrides the home directory within the container. (default "/home/circleci")
 --hostname string set container hostname
-i, --ipc run container in a new IPC namespace
 --keep-privs let root user keep privileges in container (root only)
 --mount stringArray a mount specification e.g. 'type=bind,source=/opt,destination=/hostopt'.
-n, --net run container in a new network namespace (sets up a bridge network interface by default)
 --network string specify desired network type separated by commas, each network will bring up a dedicated interface inside container (default "bridge")
 --network-args strings specify network arguments to pass to CNI plugins
 --no-home do NOT mount users home directory if /home is not the current working directory
 --no-https use http instead of https for docker:// oras:// and library://<hostname>/... URIs
 --no-init do NOT start shim process with --pid
 --no-mount strings disable one or more mount xxx options set in singularity.conf
 --no-privs drop all privileges from root user in container)
 --no-umask do not propagate umask to the container, set default 0022 umask
 --nv enable Nvidia support
 --nvccli use nvidia-container-cli for GPU setup (experimental)
-o, --overlay strings use an overlayFS image for persistent data storage or as read-only layer of container
 --passphrase prompt for an encryption passphrase
 --pem-path string enter an path to a PEM formatted RSA key for an encrypted container
-p, --pid run container in a new PID namespace
 --pwd string initial working directory for payload process inside the container
 --rocm enable experimental Rocm support
-S, --scratch strings include a scratch directory within the container that is linked to a temporary dir (use -W to force location)
 --security strings enable security features (SELinux, Apparmor, Seccomp)
-u, --userns run container in a new user namespace, allowing Singularity to run completely unprivileged on recent kernels. This disables some features of Singularity, for example it only works with sandbox images.
 --uts run container in a new UTS namespace
 --vm enable VM support
 --vm-cpu string number of CPU cores to allocate to Virtual Machine (implies --vm) (default "1")
 --vm-err enable attaching stderr from VM
 --vm-ip string IP Address to assign for container usage. Defaults to DHCP within bridge network. (default "dhcp")
 --vm-ram string amount of RAM in MiB to allocate to Virtual Machine (implies --vm) (default "1024")
-W, --workdir string working directory to be used for /tmp, /var/tmp and $HOME (if -c/--contain was also used)
-w, --writable by default all Singularity containers are available as read only. This option makes the file system accessible as read/write.
 --writable-tmpfs makes the file system accessible as read-write with non persistent data (with overlay support only)

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity verify

Verify cryptographic signatures attached to an image

Synopsis

The verify command allows a user to verify cryptographic signatures on SIF
container files. There may be multiple signatures for data objects and
multiple data objects signed. By default the command searches for the primary
partition signature. If found, a list of all verification blocks applied on
the primary partition is gathered so that data integrity (hashing) and
signature verification is done for all those blocks.

singularity verify [verify options...] <image path>

Examples

$ singularity verify container.sif

Options

-a, --all verify all objects
-g, --group-id uint32 verify objects with the specified group ID
-h, --help help for verify
-j, --json output json
 --legacy-insecure enable verification of (insecure) legacy signatures
-l, --local only verify with local key(s) in keyring
-i, --sif-id uint32 verify object with the specified ID
-u, --url string specify a URL for a key server

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

singularity version

Show the version for Singularity

Synopsis

Show the version for Singularity

singularity version

Options

-h, --help help for version

SEE ALSO

	singularity -

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Auto generated by spf13/cobra on 18-Jul-2022

Licenses

Documentation

This documentation is subject to the following 3-clause BSD license:

Copyright (c) 2017, SingularityWare, LLC. All rights reserved.
Copyright (c) 2018-2022, Sylabs, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SingularityCE Software

License

SingularityCE is subject to the Licenses detailed below.

Licenses for 3rd party works that have been incorporated into the project
can be found in LICENSE_THIRD_PARTY.md.

Licenses for dependencies used by this project can be found in
LICENSE_DEPENDENCIES.md.

BSD 3-Clause License

Copyright (c) 2015-2017, Gregory M. Kurtzer. All rights reserved.

Copyright (c) 2016-2017, The Regents of the University of California. All rights
reserved.

Copyright (c) 2017, SingularityWare, LLC. All rights reserved.

Copyright (c) 2018-2022, Sylabs, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

LBNL License

Copyright (c) 2016-2017, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NOTICE. This Software was developed under funding from the U.S. Department
of Energy and the U.S. Government consequently retains certain rights. As
such, the U.S. Government has been granted for itself and others acting on
its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
Software to reproduce, distribute copies to the public, prepare derivative
works, and perform publicly and display publicly, and to permit other to do
so.

Third Party Licenses

This project incorporates code from the following projects, under the terms
of their licenses detailed below.

github.com/opencontainers/runtime-tools

The source file:

internal/pkg/runtime/engine/config/oci/generate/generate.go

Contains code from:

github.com/opencontainers/runtime-tools/generate/config.go

Copyright 2015 The Linux Foundation.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Go

The source files:

	pkg/sypgp/testdata_test.go

	internal/pkg/util/user/cgo_lookup_unix.go

Contain code from the Go project.

Copyright 2011 The Go Authors. All rights reserved.
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file.

The referenced LICENSE file for the Go project is:

https://github.com/golang/go/blob/master/LICENSE

Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
 * Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Dependency Licenses

This project uses a number of dependencies, in accordance with their own
license terms. These dependencies are managed via the project go.mod
and go.sum files, and included in a vendor/ directory in our official
source tarballs.

A full build or package of SingularityCE uses all dependencies listed below.
If you import "github.com/sylabs/singularity" into your own project then
you may use a subset of them.

The dependencies and their licenses are as follows:

github.com/Netflix/go-expect

License: Apache-2.0

License URL: https://github.com/Netflix/go-expect/blob/master/LICENSE

github.com/containerd/containerd

License: Apache-2.0

License URL: https://github.com/containerd/containerd/blob/master/LICENSE

github.com/containernetworking/cni

License: Apache-2.0

License URL: https://github.com/containernetworking/cni/blob/master/LICENSE

github.com/containernetworking/plugins

License: Apache-2.0

License URL: https://github.com/containernetworking/plugins/blob/master/LICENSE

github.com/containers/common/pkg/seccomp

License: Apache-2.0

License URL: https://github.com/containers/common/blob/master/pkg/seccomp/LICENSE

github.com/containers/image/v5

License: Apache-2.0

License URL: https://github.com/containers/image/blob/master/v5/LICENSE

github.com/containers/libtrust

License: Apache-2.0

License URL: https://github.com/containers/libtrust/blob/master/LICENSE

github.com/containers/ocicrypt

License: Apache-2.0

License URL: https://github.com/containers/ocicrypt/blob/master/LICENSE

github.com/containers/storage/pkg

License: Apache-2.0

License URL: https://github.com/containers/storage/blob/master/pkg/LICENSE

github.com/coreos/go-iptables/iptables

License: Apache-2.0

License URL: https://github.com/coreos/go-iptables/blob/master/iptables/LICENSE

github.com/coreos/go-systemd/v22/dbus

License: Apache-2.0

License URL: https://github.com/coreos/go-systemd/blob/master/v22/dbus/LICENSE

github.com/docker/cli/cli/config

License: Apache-2.0

License URL: https://github.com/docker/cli/blob/master/cli/config/LICENSE

github.com/docker/distribution

License: Apache-2.0

License URL: https://github.com/docker/distribution/blob/master/LICENSE

github.com/docker/docker

License: Apache-2.0

License URL: https://github.com/docker/docker/blob/master/LICENSE

github.com/docker/go-connections

License: Apache-2.0

License URL: https://github.com/docker/go-connections/blob/master/LICENSE

github.com/docker/go-metrics

License: Apache-2.0

License URL: https://github.com/docker/go-metrics/blob/master/LICENSE

github.com/docker/go-units

License: Apache-2.0

License URL: https://github.com/docker/go-units/blob/master/LICENSE

github.com/docker/libtrust

License: Apache-2.0

License URL: https://github.com/docker/libtrust/blob/master/LICENSE

github.com/gosimple/unidecode

License: Apache-2.0

License URL: https://github.com/gosimple/unidecode/blob/master/LICENSE

github.com/klauspost/compress

License: Apache-2.0

License URL: https://github.com/klauspost/compress/blob/master/LICENSE

github.com/matttproud/golang_protobuf_extensions/pbutil

License: Apache-2.0

License URL: https://github.com/matttproud/golang_protobuf_extensions/blob/master/pbutil/LICENSE

github.com/moby/locker

License: Apache-2.0

License URL: https://github.com/moby/locker/blob/master/LICENSE

github.com/moby/sys/mount

License: Apache-2.0

License URL: https://github.com/moby/sys/blob/master/mount/LICENSE

github.com/moby/sys/mountinfo

License: Apache-2.0

License URL: https://github.com/moby/sys/blob/master/mountinfo/LICENSE

github.com/moby/term

License: Apache-2.0

License URL: https://github.com/moby/term/blob/master/LICENSE

github.com/modern-go/concurrent

License: Apache-2.0

License URL: https://github.com/modern-go/concurrent/blob/master/LICENSE

github.com/modern-go/reflect2

License: Apache-2.0

License URL: https://github.com/modern-go/reflect2/blob/master/LICENSE

github.com/opencontainers/go-digest

License: Apache-2.0

License URL: https://github.com/opencontainers/go-digest/blob/master/LICENSE

github.com/opencontainers/image-spec/specs-go

License: Apache-2.0

License URL: https://github.com/opencontainers/image-spec/blob/master/specs-go/LICENSE

github.com/opencontainers/runc/libcontainer

License: Apache-2.0

License URL: https://github.com/opencontainers/runc/blob/master/libcontainer/LICENSE

github.com/opencontainers/runtime-spec/specs-go

License: Apache-2.0

License URL: https://github.com/opencontainers/runtime-spec/blob/master/specs-go/LICENSE

github.com/opencontainers/umoci

License: Apache-2.0

License URL: https://github.com/opencontainers/umoci/blob/master/COPYING

github.com/opencontainers/umoci/third_party/shared

License: Apache-2.0

License URL: https://github.com/opencontainers/umoci/blob/master/third_party/shared/COPYING

github.com/pelletier/go-toml

License: Apache-2.0

License URL: https://github.com/pelletier/go-toml/blob/master/LICENSE

github.com/prometheus/client_golang/prometheus

License: Apache-2.0

License URL: https://github.com/prometheus/client_golang/blob/master/prometheus/LICENSE

github.com/prometheus/client_model/go

License: Apache-2.0

License URL: https://github.com/prometheus/client_model/blob/master/go/LICENSE

github.com/prometheus/common

License: Apache-2.0

License URL: https://github.com/prometheus/common/blob/master/LICENSE

github.com/prometheus/procfs

License: Apache-2.0

License URL: https://github.com/prometheus/procfs/blob/master/LICENSE

github.com/rootless-containers/proto/go-proto

License: Apache-2.0

License URL: https://github.com/rootless-containers/proto/blob/master/go-proto/COPYING

github.com/safchain/ethtool

License: Apache-2.0

License URL: https://github.com/safchain/ethtool/blob/master/LICENSE

github.com/spf13/cobra

License: Apache-2.0

License URL: https://github.com/spf13/cobra/blob/master/LICENSE.txt

github.com/stefanberger/go-pkcs11uri

License: Apache-2.0

License URL: https://github.com/stefanberger/go-pkcs11uri/blob/master/LICENSE

github.com/vbatts/go-mtree/pkg/govis

License: Apache-2.0

License URL: https://github.com/vbatts/go-mtree/blob/master/pkg/govis/COPYING

github.com/vishvananda/netlink

License: Apache-2.0

License URL: https://github.com/vishvananda/netlink/blob/master/LICENSE

github.com/vishvananda/netns

License: Apache-2.0

License URL: https://github.com/vishvananda/netns/blob/master/LICENSE

google.golang.org/genproto/googleapis/rpc/status

License: Apache-2.0

Project URL: https://google.golang.org/genproto/googleapis/rpc/status

google.golang.org/grpc

License: Apache-2.0

Project URL: https://google.golang.org/grpc

gopkg.in/square/go-jose.v2

License: Apache-2.0

Project URL: https://gopkg.in/square/go-jose.v2

gopkg.in/yaml.v2

License: Apache-2.0

Project URL: https://gopkg.in/yaml.v2

gotest.tools/v3

License: Apache-2.0

Project URL: https://gotest.tools/v3

oras.land/oras-go/pkg

License: Apache-2.0

Project URL: https://oras.land/oras-go/pkg

github.com/godbus/dbus/v5

License: BSD-2-Clause

License URL: https://github.com/godbus/dbus/blob/master/v5/LICENSE

github.com/gorilla/websocket

License: BSD-2-Clause

License URL: https://github.com/gorilla/websocket/blob/master/LICENSE

github.com/pkg/errors

License: BSD-2-Clause

License URL: https://github.com/pkg/errors/blob/master/LICENSE

github.com/russross/blackfriday/v2

License: BSD-2-Clause

License URL: https://github.com/russross/blackfriday/blob/master/v2/LICENSE.txt

github.com/syndtr/gocapability/capability

License: BSD-2-Clause

License URL: https://github.com/syndtr/gocapability/blob/master/capability/LICENSE

github.com/ProtonMail/go-crypto

License: BSD-3-Clause

License URL: https://github.com/ProtonMail/go-crypto/blob/master/LICENSE

github.com/cyphar/filepath-securejoin

License: BSD-3-Clause

License URL: https://github.com/cyphar/filepath-securejoin/blob/master/LICENSE

github.com/gogo/protobuf/proto

License: BSD-3-Clause

License URL: https://github.com/gogo/protobuf/blob/master/proto/LICENSE

github.com/golang/protobuf

License: BSD-3-Clause

License URL: https://github.com/golang/protobuf/blob/master/LICENSE

github.com/google/go-cmp/cmp

License: BSD-3-Clause

License URL: https://github.com/google/go-cmp/blob/master/cmp/LICENSE

github.com/google/uuid

License: BSD-3-Clause

License URL: https://github.com/google/uuid/blob/master/LICENSE

github.com/gorilla/mux

License: BSD-3-Clause

License URL: https://github.com/gorilla/mux/blob/master/LICENSE

github.com/klauspost/compress/internal/snapref

License: BSD-3-Clause

License URL: https://github.com/klauspost/compress/blob/master/internal/snapref/LICENSE

github.com/miekg/pkcs11

License: BSD-3-Clause

License URL: https://github.com/miekg/pkcs11/blob/master/LICENSE

github.com/proglottis/gpgme

License: BSD-3-Clause

License URL: https://github.com/proglottis/gpgme/blob/master/LICENSE

github.com/prometheus/common/internal/bitbucket.org/ww/goautoneg

License: BSD-3-Clause

License URL: https://github.com/prometheus/common/blob/master/internal/bitbucket.org/ww/goautoneg/README.txt

github.com/spf13/pflag

License: BSD-3-Clause

License URL: https://github.com/spf13/pflag/blob/master/LICENSE

github.com/sylabs/json-resp

License: BSD-3-Clause

License URL: https://github.com/sylabs/json-resp/blob/master/LICENSE.md

github.com/sylabs/scs-build-client/client

License: BSD-3-Clause

License URL: https://github.com/sylabs/scs-build-client/blob/master/client/LICENSE.md

github.com/sylabs/scs-key-client/client

License: BSD-3-Clause

License URL: https://github.com/sylabs/scs-key-client/blob/master/client/LICENSE.md

github.com/sylabs/scs-library-client/client

License: BSD-3-Clause

License URL: https://github.com/sylabs/scs-library-client/blob/master/client/LICENSE.md

github.com/sylabs/sif/v2

License: BSD-3-Clause

License URL: https://github.com/sylabs/sif/blob/master/v2/LICENSE.md

github.com/ulikunitz/xz

License: BSD-3-Clause

License URL: https://github.com/ulikunitz/xz/blob/master/LICENSE

github.com/vbatts/go-mtree

License: BSD-3-Clause

License URL: https://github.com/vbatts/go-mtree/blob/master/LICENSE

github.com/vbatts/tar-split/archive/tar

License: BSD-3-Clause

License URL: https://github.com/vbatts/tar-split/blob/master/archive/tar/LICENSE

golang.org/x/crypto

License: BSD-3-Clause

Project URL: https://golang.org/x/crypto

golang.org/x/net

License: BSD-3-Clause

Project URL: https://golang.org/x/net

golang.org/x/sync

License: BSD-3-Clause

Project URL: https://golang.org/x/sync

golang.org/x/sys

License: BSD-3-Clause

Project URL: https://golang.org/x/sys

golang.org/x/term

License: BSD-3-Clause

Project URL: https://golang.org/x/term

golang.org/x/text

License: BSD-3-Clause

Project URL: https://golang.org/x/text

google.golang.org/protobuf

License: BSD-3-Clause

Project URL: https://google.golang.org/protobuf

gopkg.in/square/go-jose.v2/json

License: BSD-3-Clause

Project URL: https://gopkg.in/square/go-jose.v2/json

gotest.tools/v3/internal/difflib

License: BSD-3-Clause

Project URL: https://gotest.tools/v3/internal/difflib

mvdan.cc/sh/v3

License: BSD-3-Clause

Project URL: https://mvdan.cc/sh/v3

github.com/BurntSushi/toml

License: MIT

License URL: https://github.com/BurntSushi/toml/blob/master/COPYING

github.com/VividCortex/ewma

License: MIT

License URL: https://github.com/VividCortex/ewma/blob/master/LICENSE

github.com/acarl005/stripansi

License: MIT

License URL: https://github.com/acarl005/stripansi/blob/master/LICENSE

github.com/adigunhammedolalekan/registry-auth

License: MIT

License URL: https://github.com/adigunhammedolalekan/registry-auth/blob/master/LICENSE

github.com/apex/log

License: MIT

License URL: https://github.com/apex/log/blob/master/LICENSE

github.com/beorn7/perks/quantile

License: MIT

License URL: https://github.com/beorn7/perks/blob/master/quantile/LICENSE

github.com/blang/semver/v4

License: MIT

License URL: https://github.com/blang/semver/blob/master/v4/LICENSE

github.com/buger/jsonparser

License: MIT

License URL: https://github.com/buger/jsonparser/blob/master/LICENSE

github.com/cespare/xxhash/v2

License: MIT

License URL: https://github.com/cespare/xxhash/blob/master/v2/LICENSE.txt

github.com/cilium/ebpf

License: MIT

License URL: https://github.com/cilium/ebpf/blob/master/LICENSE

github.com/cpuguy83/go-md2man/v2/md2man

License: MIT

License URL: https://github.com/cpuguy83/go-md2man/blob/master/v2/md2man/LICENSE.md

github.com/creack/pty

License: MIT

License URL: https://github.com/creack/pty/blob/master/LICENSE

github.com/docker/docker-credential-helpers

License: MIT

License URL: https://github.com/docker/docker-credential-helpers/blob/master/LICENSE

github.com/fatih/color

License: MIT

License URL: https://github.com/fatih/color/blob/master/LICENSE.md

github.com/ghodss/yaml

License: MIT

License URL: https://github.com/ghodss/yaml/blob/master/LICENSE

github.com/go-log/log

License: MIT

License URL: https://github.com/go-log/log/blob/master/LICENSE

github.com/json-iterator/go

License: MIT

License URL: https://github.com/json-iterator/go/blob/master/LICENSE

github.com/klauspost/compress/zstd/internal/xxhash

License: MIT

License URL: https://github.com/klauspost/compress/blob/master/zstd/internal/xxhash/LICENSE.txt

github.com/klauspost/pgzip

License: MIT

License URL: https://github.com/klauspost/pgzip/blob/master/LICENSE

github.com/kr/pty

License: MIT

License URL: https://github.com/kr/pty/blob/master/LICENSE

github.com/mattn/go-colorable

License: MIT

License URL: https://github.com/mattn/go-colorable/blob/master/LICENSE

github.com/mattn/go-isatty

License: MIT

License URL: https://github.com/mattn/go-isatty/blob/master/LICENSE

github.com/mattn/go-runewidth

License: MIT

License URL: https://github.com/mattn/go-runewidth/blob/master/LICENSE

github.com/morikuni/aec

License: MIT

License URL: https://github.com/morikuni/aec/blob/master/LICENSE

github.com/rivo/uniseg

License: MIT

License URL: https://github.com/rivo/uniseg/blob/master/LICENSE.txt

github.com/sirupsen/logrus

License: MIT

License URL: https://github.com/sirupsen/logrus/blob/master/LICENSE

github.com/urfave/cli

License: MIT

License URL: https://github.com/urfave/cli/blob/master/LICENSE

go.etcd.io/bbolt

License: MIT

Project URL: https://go.etcd.io/bbolt

go.mozilla.org/pkcs7

License: MIT

Project URL: https://go.mozilla.org/pkcs7

github.com/gosimple/slug

License: MPL-2.0

License URL: https://github.com/gosimple/slug/blob/master/LICENSE

github.com/hashicorp/errwrap

License: MPL-2.0

License URL: https://github.com/hashicorp/errwrap/blob/master/LICENSE

github.com/hashicorp/go-multierror

License: MPL-2.0

License URL: https://github.com/hashicorp/go-multierror/blob/master/LICENSE

github.com/vbauerster/mpb

License: The Unlicense

License URL: https://github.com/vbauerster/mpb/blob/master/UNLICENSE

Index

 nav.xhtml

 Table of Contents

 		
 SingularityCE User Guide

 		
 Introduction to SingularityCE

 		
 Why use SingularityCE?

 		
 Why use containers?

 		
 Use Cases

 		
 BYOE: Bring Your Own Environment!

 		
 Reproducible science

 		
 Commercially supported code requiring a particular environment

 		
 Static environments (software appliances)

 		
 Legacy code on old operating systems

 		
 Complicated software stacks that are very host specific

 		
 Complicated work-flows that require custom installation and/or data

 		
 Quick Start

 		
 Quick Installation Steps

 		
 Install system dependencies

 		
 Install Go

 		
 Download SingularityCE from a release

 		
 Compile the SingularityCE source code

 		
 Overview of the SingularityCE Interface

 		
 Download pre-built images

 		
 Interact with images

 		
 Shell

 		
 Executing Commands

 		
 Running a container

 		
 Working with Files

 		
 Build images from scratch

 		
 Sandbox Directories

 		
 Converting images from one format to another

 		
 SingularityCE Definition Files

 		
 Security in SingularityCE

 		
 Security Policy

 		
 Background

 		
 Setuid & User Namespaces

 		
 Runtime & User Privilege Model

 		
 Singularity Image Format (SIF)

 		
 Configuration & Runtime Options

 		
 Build a container

 		
 Overview

 		
 Downloading an existing container from the Container Library

 		
 Downloading an existing container from Docker Hub

 		
 Creating writable –sandbox directories

 		
 Converting containers from one format to another

 		
 Building containers from SingularityCE definition files

 		
 Building encrypted containers

 		
 Build options

 		
 –builder

 		
 –detached

 		
 –encrypt

 		
 –fakeroot

 		
 –force

 		
 –json

 		
 –library

 		
 –notest

 		
 –passphrase

 		
 –pem-path

 		
 –remote

 		
 –sandbox

 		
 –section

 		
 –update

 		
 –nv

 		
 –rocm

 		
 –bind

 		
 –writable-tmpfs

 		
 More Build topics

 		
 The Definition File

 		
 Overview

 		
 Header

 		
 Preferred bootstrap agents

 		
 Other bootstrap agents

 		
 SIF Image Verification / Fingerprints Header

 		
 Sections

 		
 %setup

 		
 %files

 		
 %app*

 		
 %post

 		
 %test

 		
 %environment

 		
 %startscript

 		
 %runscript

 		
 %labels

 		
 %help

 		
 Multi-Stage Builds

 		
 SCIF Apps

 		
 SCIF %app* sections

 		
 Best Practices for Build Recipes

 		
 Build Environment

 		
 Overview

 		
 Cache Folders

 		
 BoltDB Corruption Errors

 		
 Cache commands

 		
 Listing Cache

 		
 Cleaning the Cache

 		
 Temporary Folders

 		
 Encrypted Containers

 		
 Environment Variables

 		
 Defaults

 		
 Fakeroot feature

 		
 Overview

 		
 Restrictions/security

 		
 Filesystem

 		
 Network

 		
 Requirements / Configuration

 		
 Usage

 		
 Build

 		
 Examples

 		
 Sign and Verify

 		
 Verifying containers from the Container Library

 		
 Signing your own containers

 		
 Generating and managing PGP keys

 		
 Searching for keys

 		
 Signing and validating your own containers

 		
 Advanced Signing - SIF IDs and Groups

 		
 Key management commands

 		
 Changes in SingularityCE 3.7

 		
 Key import command

 		
 Key export command

 		
 Key remove command

 		
 Encrypted Containers

 		
 Overview

 		
 Encrypting a container

 		
 Passphrase Encryption

 		
 PEM File Encryption

 		
 Running an encrypted container

 		
 Running a container encrypted with a passphrase

 		
 Running a container encrypted with a PEM file

 		
 Remote Endpoints

 		
 Overview

 		
 Public Sylabs Cloud

 		
 Managing Remote Endpoints

 		
 List and Login to Remotes

 		
 Add & Remove Remotes

 		
 Set the Default Remote

 		
 Keyserver Configurations

 		
 Managing OCI Registries

 		
 Sylabs Cloud Library

 		
 Overview

 		
 Make an Account

 		
 Creating a Access token

 		
 Pushing a Container

 		
 Pulling a container

 		
 Pulling your own container

 		
 Verify/Sign your Container

 		
 Searching the Library for Containers

 		
 Using the CLI Search

 		
 Remote Builder

 		
 Building from a definition file:

 		
 Bind Paths and Mounts

 		
 Overview

 		
 System-defined bind paths

 		
 Disabling System Binds

 		
 User-defined bind paths

 		
 –bind Examples

 		
 –mount Examples

 		
 Using –bind or –mount with the –writable flag

 		
 Using –no-home and –containall flags

 		
 FUSE mounts

 		
 Requirements

 		
 FUSE mount definitions

 		
 FUSE mount with a host executable

 		
 FUSE mount with a container executable

 		
 Image Mounts

 		
 Ext3 Image Files

 		
 SquashFS Image Files

 		
 SIF Image Files

 		
 Persistent Overlays

 		
 Overview

 		
 Usage

 		
 File system image overlay

 		
 Directory overlay

 		
 Overlay embedded in SIF

 		
 Final note

 		
 Running Services

 		
 Overview

 		
 Container Instances in SingularityCE

 		
 Nginx “Hello-world” in SingularityCE

 		
 Putting all together

 		
 Building the image

 		
 Running the Service

 		
 Making it Fancy

 		
 System integration / PID files

 		
 Environment and Metadata

 		
 Environment Overview

 		
 Environment From a Base Image

 		
 Environment From a Definition File

 		
 Build Time Variables in %post

 		
 Environment From the Host

 		
 Environment From the SingularityCE Runtime

 		
 Overriding Environment Variables

 		
 –env option

 		
 –env-file option

 		
 SINGULARITYENV_ prefix

 		
 Manipulating PATH

 		
 Escaping and Evaluation of Environment Variables

 		
 Docker / OCI Compatibility

 		
 Using Host Variables

 		
 Using Container Variables

 		
 Quoting / Avoiding Evaluation

 		
 Environment Variable Precedence

 		
 Umask / Default File Permissions

 		
 Container Metadata

 		
 Inherited Labels

 		
 Custom Labels

 		
 Dynamic Build Time Labels

 		
 Inspecting Metadata

 		
 /.singularity.d directory

 		
 Plugins

 		
 Overview

 		
 Limitations / Requirements

 		
 Using Plugins

 		
 Writing a Plugin

 		
 Security Options

 		
 Linux Capabilities

 		
 Building encrypted containers

 		
 Security related action options

 		
 –add-caps

 		
 –allow-setuid

 		
 –keep-privs

 		
 –drop-caps

 		
 –security

 		
 Network Options

 		
 –dns

 		
 –hostname

 		
 –net

 		
 –network

 		
 –network-args

 		
 Limiting Container Resources

 		
 Requirements - Linux Cgroups

 		
 Command Line Limit Flags

 		
 CPU Limits

 		
 Memory Limits

 		
 IO Limits

 		
 Applying Resource Limits From a TOML file

 		
 CPU Limits

 		
 Memory Limits

 		
 IO Limits

 		
 Device Limits

 		
 Other limits

 		
 Applying Resource Limits With External Tools

 		
 systemd-run

 		
 Support for Docker / OCI Containers

 		
 Containers From Docker Hub

 		
 Public Containers

 		
 Docker Hub Limits

 		
 Authentication / Private Containers

 		
 Containers From Other Registries

 		
 Quay.io

 		
 NVIDIA NGC

 		
 GitHub Container Registry

 		
 AWS ECR

 		
 Azure ACR

 		
 Building From Docker / OCI Containers

 		
 Registries In Definition Files

 		
 Archives & Docker Daemon

 		
 Differences and Limitations vs Docker

 		
 Read-only by Default

 		
 Dockerfile USER

 		
 Default Mounts / $HOME

 		
 Environment Propagation

 		
 Environment Variable Escaping / Evaluation

 		
 Namespace & Device Isolation

 		
 Init Shim Process

 		
 Docker-like –compat Flag

 		
 CMD / ENTRYPOINT Behaviour

 		
 Argument Handling

 		
 Best Practices for Docker & SingularityCE Compatibility

 		
 Troubleshooting

 		
 Registry Authentication Issues

 		
 Container Doesn’t Start

 		
 Unexpected Container Behaviour

 		
 Getting Help

 		
 SingularityCE Definition file vs. Dockerfile

 		
 OCI Runtime Support

 		
 Overview

 		
 OCI Spec Support

 		
 Future Development

 		
 OCI Command Group

 		
 Mounting an OCI Filesystem Bundle

 		
 Content of an OCI Compliant Filesystem Bundle

 		
 OCI config.json

 		
 Running a Container

 		
 Full Container Lifecycle

 		
 Unmounting OCI Filesystem Bundles

 		
 Technical Implementation

 		
 Singularity and MPI applications

 		
 Hybrid model

 		
 Test Application

 		
 MPICH Hybrid Container

 		
 Open MPI Hybrid Container

 		
 Running an MPI Application

 		
 Bind model

 		
 Bind Mode Definition File

 		
 Running an MPI Application

 		
 Batch Scheduler / Slurm

 		
 Alternative Launchers

 		
 Interconnects / Networking

 		
 Troubleshooting Tips

 		
 GPU Support

 		
 NVIDIA GPUs & CUDA (Legacy)

 		
 Requirements

 		
 Example - tensorflow-gpu

 		
 Multiple GPUs

 		
 Troubleshooting

 		
 NVIDIA GPUs & CUDA (nvidia-container-cli)

 		
 Requirements & Limitations

 		
 Example - tensorflow-gpu

 		
 GPU Selection

 		
 Other GPU Options

 		
 AMD GPUs & ROCm

 		
 Requirements

 		
 Example - tensorflow-rocm

 		
 OpenCL Applications

 		
 Example - Blender OpenCL

 		
 Contributing

 		
 Join the community

 		
 SingularityCE Google Group

 		
 SingularityCE on Slack

 		
 Raise an Issue

 		
 Write Documentation

 		
 Contribute to the code

 		
 Step 1. Fork the repo

 		
 Step 2. Checkout a new branch

 		
 Step 3. Make your changes

 		
 Step 4. Push your branch to your fork

 		
 Step 5. Submit a Pull Request

 		
 Step 6. Keep your branch in sync

 		
 Appendix

 		
 SingularityCE’s environment variables

 		
 A

 		
 B

 		
 C

 		
 D

 		
 E

 		
 F

 		
 G

 		
 H

 		
 I

 		
 J

 		
 K

 		
 L

 		
 M

 		
 N

 		
 O

 		
 P

 		
 R

 		
 S

 		
 T

 		
 U

 		
 W

 		
 Build Modules

 		
 library bootstrap agent

 		
 docker bootstrap agent

 		
 shub bootstrap agent

 		
 oras bootstrap agent

 		
 localimage bootstrap agent

 		
 yum bootstrap agent

 		
 debootstrap build agent

 		
 arch bootstrap agent

 		
 busybox bootstrap agent

 		
 zypper bootstrap agent

 		
 docker-daemon and docker-archive bootstrap agents

 		
 scratch bootstrap agent

 		
 Command Line Reference

 		
 singularity

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity build

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity cache

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity cache clean

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity cache list

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity capability

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity capability add

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity capability avail

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity capability drop

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity capability list

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity config

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity config fakeroot

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity config global

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity delete

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity exec

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity inspect

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity instance

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity instance list

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity instance start

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity instance stop

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key export

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key import

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key list

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key newpair

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key pull

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key push

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key remove

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity key search

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci attach

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci create

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci delete

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci exec

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci kill

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci mount

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci pause

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci resume

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci run

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci start

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci state

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci umount

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity oci update

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity overlay

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity overlay create

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin compile

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin create

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin disable

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin enable

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin inspect

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin install

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin list

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity plugin uninstall

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity pull

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity push

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote add

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote add-keyserver

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote list

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote login

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote logout

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote remove

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote remove-keyserver

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote status

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity remote use

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity run

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity run-help

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity search

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity shell

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif add

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif del

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif dump

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif header

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif info

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif list

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif new

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sif setprim

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity sign

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity test

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity verify

 		
 Synopsis

 		
 Examples

 		
 Options

 		
 SEE ALSO

 		
 singularity version

 		
 Synopsis

 		
 Options

 		
 SEE ALSO

 		
 Licenses

 		
 Documentation

 		
 SingularityCE Software

 		
 License

 		
 Third Party Licenses

 		
 Dependency Licenses

_images/docpage.png
LS sylabs.io =

30
Documentation for userHTHL |
Documentation for sdmins:HTML |
26

Documentation for users: HTIL |
Documentation for sdmins:HTML |
25

Documentation for users: HTIL |

Documentation for admins: HTWL |

About Sylabs

_static/file.png

_static/logo.png
e\
S

SINGULARITYCE

_static/favicon.png
S/

_static/minus.png

_static/plus.png

